Calculating Light Beam Speed with Inverse Trig Functions

imull
Messages
40
Reaction score
0

Homework Statement


A patrol car is 50 ft from a long warehouse. The revolving light on top of the car turns at a rate of 30 rotations per minute. How fast is the beam of light moving along the warehouse wall when the beam makes a 45° angle with the line perpendicular from the light to the wall?

Homework Equations


The Attempt at a Solution


First I started out by setting θ as a function of x : tanθ=(x/50)→θ=arctan(x/50). So when θ=45°, x=50ft. dθ/dt is 30(2∏)=60∏. So taking the derivative: dθ/dt=[(50)/(502+x2)]dx/dt. After substituting values, 60∏=(0.01)dx/dt→dx/dt=6000∏ ft/min. Is this right?
 
Physics news on Phys.org
imull said:

Homework Statement


A patrol car is 50 ft from a long warehouse. The revolving light on top of the car turns at a rate of 30 rotations per minute. How fast is the beam of light moving along the warehouse wall when the beam makes a 45° angle with the line perpendicular from the light to the wall?

Homework Equations


The Attempt at a Solution


First I started out by setting θ as a function of x : tanθ=(x/50)→θ=arctan(x/50). So when θ=45°, x=50ft. dθ/dt is 30(2∏)=60∏. So taking the derivative: dθ/dt=[(50)/(502+x2)]dx/dt. After substituting values, 60∏=(0.01)dx/dt→dx/dt=6000∏ ft/min. Is this right?

Yes, it is right. But you didn't really need to go through the arctan stuff. Just differentiate both sides of 50tanθ=x.
 
Last edited:
Okay, thank you. The reason that I did the arctan stuff was because we're doing arctan derivatives, so I figured my teacher would want me to do it that way.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top