Calculating Outward Flux across a Surface using Surface Integral Definition

  • Thread starter Thread starter jdstokes
  • Start date Start date
  • Tags Tags
    Flux Surface
jdstokes
Messages
520
Reaction score
1
Hi all,

Let D be the top half of a ball of radius a>0 and let

\mathbf{f} = xz \mathbf{i} + y \mathbf{j} + x \mathbf{k}

Calculate the outward flux across S using the definition of the surface integral.

\int_{S} \mathbf{f} \cdot \mathbf{n} dS = \int_{cap} \mathbf{f} \cdot \mathbf{n} dS + \int_{disc} \mathbf{f} \cdot \mathbf{n} dS

\frac{1}{a}\int_{cap} (xz,y,x) \cdot (x,y,z) d S
\frac{1}{a}\int_{cap} x^2z + y^2 + xz d S
\frac{1}{a}\int_{0}^{2\pi}\int_{0}^{\pi/2} (r^3\cos^2\varphi\sin^2\theta\cos\theta + r^2\sin^2\varphi\sin^2\theta + r^2\cos\varphi\sin\theta\cos\theta) (a^2 \sin\theta) d\theta d\varphi
a\int_{0}^{2\pi}\int_{0}^{\pi/2} (r^3\cos^2\varphi\sin^3\theta\cos\theta + r^2\sin^2\varphi\sin^3\theta + r^2\cos\varphi\sin^2\theta\cos\theta) d\theta d\varphi

a\int_{0}^{2\pi}\int_{0}^{\pi/2} (r^3\cos^2\varphi\sin^3\theta\cos\theta + r^2\cos\varphi\sin^2\theta\cos\theta) d\theta d\varphi

I assume that one would then evaluate the integral by parts. But is there an easier method?
 
Last edited:
Physics news on Phys.org
I figured it out using integration by substitution.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top