In the case above it would not matter if one used radians or degrees.
mr200backstrok: how would you solve Ksin(pi/K)<pi<Ktan(pi/K)? would you just guess and check?
Hopefully this can be seen without a drawing. I'll take a real simple case: Divide a circle into 6 parts and form the triangles. In this case, we have a 60 degree angle in each of these equilateral triangles.
NOw in this case from the center of the circle bisect the angle and form a right angle at the base of the triangle. Now this is easy to work with. Assuming the radius is 1 for simplicity, we are looking at the sign of 30 degrees, which was determined by Euclid to be 1/2. Thus 1 is the base of the triangle we just bisected, and since we have 6 such triangles, the length of these =6.
Now while the base of the tirangles are all inside the arc of the circle, if we move to the tangent, looking at it the same way, which is outside the arc, we have 2/sqrt3 for the base of the triangle and multiplying by 6 we go all around the circle.
Thus we have shown: 6<2pi<12/sqrt3=6.93. For the next case, we could look at 12 triangles of 30 degrees and bisect from the center, producing a 15 degree angle. We can find that from the half angle formula.
2sin15 =\sqrt{2-\sqrt3}. tan 15 = 2-\sqrt3 So the problem now is transformed into dealing with square roots, and continuing in a similar manner.