Shafikae
- 39
- 0
Consider a hydrogen atom whose wave function is at t=0 is the following superposition of energy eigenfunctions \psinlm(r)
\Psi(r, t=0) = \frac{1}{\sqrt{14}} *[2\psi100(r) -3\psi200(r) +\psi322(r)
What is the probability of finding the system in the ground state (100? in the state (200)? in the state (322)? In another energy eigenstate?
For this part i found each eigen state and put it into an integral. Should there be limits of integration for r? If so, from where to where? I did the integration for (100) and (200) but for (322) i got something crazy.
What is the expectation value of the energy: of the operator L2, of the operator Lz
I have no clue what to do here.
\Psi(r, t=0) = \frac{1}{\sqrt{14}} *[2\psi100(r) -3\psi200(r) +\psi322(r)
What is the probability of finding the system in the ground state (100? in the state (200)? in the state (322)? In another energy eigenstate?
For this part i found each eigen state and put it into an integral. Should there be limits of integration for r? If so, from where to where? I did the integration for (100) and (200) but for (322) i got something crazy.
What is the expectation value of the energy: of the operator L2, of the operator Lz
I have no clue what to do here.