MHB Calculating Probabilities using Distribution Function F

AI Thread Summary
The discussion focuses on calculating probabilities using a given distribution function F for a random variable X. Several probability values are proposed, including P(X<0)=0.1 and P(X<=0)=0.2, which receive confirmation from other participants. There is uncertainty regarding P(3<=X<=4), with suggestions that the inclusion of the boundary may affect the result. The calculations for P(X>5) and P(X=-1) are generally accepted, while P(X=1) raises questions about the continuity of the distribution. Overall, participants aim to clarify the calculations and provide guidance on the probability concepts involved.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hello...!I need some help...!
Let the distribution function F of a random variable X given in the following attachment. Calculate the following:
P(X=-1), P(X<0), P(X<=0), P(X=1), P(X>5), P(X>=5), P(3<=X<=4).

I think that these are the answers:P(X<0)=F(0-)=0.1, P(X<=0)=F(0)=0.2, P(3<=X<=4)=F(4)-F(3)=0.8-0.8=0, P(X>5)=P(X>=5)=0, P(X=-1)=F(-1+)-F(-1-)=0.1-0=0.1, P(X=1)=F(1+)-F(1-)=0.3-0.3=0,but I am not sure...
I hope you can help me...!
 

Attachments

  • 552876_485386744849993_938291547_n.jpg
    552876_485386744849993_938291547_n.jpg
    8.6 KB · Views: 97
Mathematics news on Phys.org
Hi mathmari,

Welcome to MHB! I will try to answer the parts I can, although there are a couple of parts where I'm not quite sure about the answer.

a) $P(X<0)=F(0-)=0.1$ This looks good to me.
b) $P(X \le 0)=F(0)=0.2$ (Yes)

c) $P(3 \le X \le 4)=F(4)-F(3)=0.8-0.8=0$ This one I'm not sure about. The reason why is because usually the bottom boundary is not included. I believe that $P(3< X \le 4)=F(4)-F(3)=0.8-0.8=0$ but I'm not sure about how including 3 affects this. Just something to think about.

d) $P(X>5)=P(X \ge 5)=0$ These mustn't always be equal but in this problem I agree. Looks ok to me.
e) $P(X=-1)=F(-1+)-F(-1-)=0.1-0=0.1$ I would write it as $P(X=1)=P(X \le 1) - P(X <1)$ but yep, the final answer looks good.

f) $P(X=1)=F(1+)-F(1-)=0.3-0.3=0$. Again, $P(X=1)=P(X \le 1)-P(X<1)$. The tricky thing here is that for $X \in [0,1]$ the CDF appears to show that $X$ is continuous, not discrete so it seems like an integral might be needed. Not sure on this one, but that's my comment.

Sorry I couldn't completely help you but hopefully this is a start and someone else can comment as well! Once again, welcome to MHB.
 
Last edited:
Thank you! :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top