MHB Calculating Probabilities using Distribution Function F

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hello...!I need some help...!
Let the distribution function F of a random variable X given in the following attachment. Calculate the following:
P(X=-1), P(X<0), P(X<=0), P(X=1), P(X>5), P(X>=5), P(3<=X<=4).

I think that these are the answers:P(X<0)=F(0-)=0.1, P(X<=0)=F(0)=0.2, P(3<=X<=4)=F(4)-F(3)=0.8-0.8=0, P(X>5)=P(X>=5)=0, P(X=-1)=F(-1+)-F(-1-)=0.1-0=0.1, P(X=1)=F(1+)-F(1-)=0.3-0.3=0,but I am not sure...
I hope you can help me...!
 

Attachments

  • 552876_485386744849993_938291547_n.jpg
    552876_485386744849993_938291547_n.jpg
    8.6 KB · Views: 91
Mathematics news on Phys.org
Hi mathmari,

Welcome to MHB! I will try to answer the parts I can, although there are a couple of parts where I'm not quite sure about the answer.

a) $P(X<0)=F(0-)=0.1$ This looks good to me.
b) $P(X \le 0)=F(0)=0.2$ (Yes)

c) $P(3 \le X \le 4)=F(4)-F(3)=0.8-0.8=0$ This one I'm not sure about. The reason why is because usually the bottom boundary is not included. I believe that $P(3< X \le 4)=F(4)-F(3)=0.8-0.8=0$ but I'm not sure about how including 3 affects this. Just something to think about.

d) $P(X>5)=P(X \ge 5)=0$ These mustn't always be equal but in this problem I agree. Looks ok to me.
e) $P(X=-1)=F(-1+)-F(-1-)=0.1-0=0.1$ I would write it as $P(X=1)=P(X \le 1) - P(X <1)$ but yep, the final answer looks good.

f) $P(X=1)=F(1+)-F(1-)=0.3-0.3=0$. Again, $P(X=1)=P(X \le 1)-P(X<1)$. The tricky thing here is that for $X \in [0,1]$ the CDF appears to show that $X$ is continuous, not discrete so it seems like an integral might be needed. Not sure on this one, but that's my comment.

Sorry I couldn't completely help you but hopefully this is a start and someone else can comment as well! Once again, welcome to MHB.
 
Last edited:
Thank you! :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top