Calculating Tension with Kinetic Friction in a Pulley

AI Thread Summary
The discussion focuses on calculating tension in a pulley system involving static and kinetic friction. For the static scenario, tension was calculated using T=mg, resulting in 0.618N, while static friction was found to be 0.745N. In the kinetic scenario, an initial calculation of tension yielded 0.471N, but this led to an illogical result for kinetic friction, prompting a reevaluation. The participant then recalculated tension using T=mg+Fs, arriving at 1.22N and a sensible kinetic friction value of 0.143N. The thread seeks clarification on the correct method for calculating tension in the kinetic case, emphasizing the role of gravitational force and static friction.
limpexowns
Messages
2
Reaction score
0

Homework Statement


(1) Firstly, the block as it rest at incline of 10 degrees and mass is added on the other side of pulley to overcome static friction (0.0063kg). The block weighs 0.8kg. Calculate the tension.

(2) The block is at same angle and mass but this time the block was lightly pushed from back to make it move. As the block began to move, mass was added on the other side of the pulley to just keep moving it forward. The mass was (0.00480kg). Calculate Tension.

Homework Equations


T=mg (to calculate tension for static friction)
T=mg+Fs
Fs=T-Fgsin@
Fk=T-Fgsin@

The Attempt at a Solution


For (1), I used T=mg to find tension which comes out to be 0.618N. I used that value to find Static Friction and I got 0.745N

For (2), I tried using T=mg to find Tension and I got 0.471N but when I used that value to find Kinetic friction, I'm getting 0.892N. This value didn't make sense because the Kinetic friction is always less than static friction but here it was higher.

So, I tried using T=mg+Fs for tension in Kinetic friction. I assumed that Fs was force applied because the cart was slightly pushed just o make it move. By using that, I got T=1.22N. I used that value to find Kinetic friction and I'm getting 0.143N. This value makes sense to me because the kinetic friction is lower than static.

The questions are very similar to this lab: http://ems.calumet.purdue.edu/chemphys/ncrelich/PortableDocuments/PHYS152/Summer2009/LabInclinedPlane.pdf

So, can you please let me know which method is right in order to calculate Tension for Kinetic part. Thanks a lot.
 
Last edited by a moderator:
Physics news on Phys.org
(1) Firstly, the block as it rest at incline of 10 degrees and mass is added on the other side of pulley to overcome static friction (0.0063kg). The block weighs 0.8kg. Calculate the tension.

Then the tension is g*0.0063kg+g*0.8kg*sin10°
Do you agree ?
 
Since the mass on the pulley is the one that made the block start moving. I think that the tension produced by that mass includes Force of gravity in the X and static friction of the block. That's why the equation I used is T=mg.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top