Calculating the area of equilateral triangle using calculus

Adel Makram
Messages
632
Reaction score
15

Homework Statement


Calculating the area of equilateral triangle using calculus.

Homework Equations

The Attempt at a Solution


equilateral T.png

The area of the triangle is the area of the circle minus 3 times the area of the sector shown in (light blue). So, the target is to calculate the pink area first.
##y=\sqrt{r^2-x^2}##
The pink area is ##\int_{0}^{x_0} \sqrt{r^2-x^2} dx## = ##\int_{0}^{x_0} r\sqrt{1-\frac{x^2}{r^2}} dx## Putting ##x=r sin a## and doing the usual math with integration from 0 to ##\pi/6## led me to;
##r^2\int_{0}^{\pi/6} cos^2 a da##=##\frac{r^2}{2}\int_{0}^{\pi/6} cos (2a+1) da##=##\frac{r^2}{2} \left[\frac{sin2a}{2}+a\right]_0^{\pi/6}##=##\frac{r^2}{2} [\frac{1}{2}\frac{\sqrt 3}{2}+\pi/6]##=##\frac{r^2 \sqrt 3}{8} +\frac{\pi}{12}##
The blue area is then ##2 (\frac{\pi r^2}{4}-\frac{r^2 \sqrt 3}{8} -\frac{\pi}{12})##=##\frac{\pi r^2}{2}-\frac{r^2 \sqrt 3}{4} -\frac{\pi}{6})## and then the area of triangle is ##\pi r^2-3(\frac{\pi r^2}{2}-\frac{r^2 \sqrt 3}{4} -\frac{\pi}{6})##
This will not give the correct result of ##\frac{3\sqrt3 r^2}{4}##
 
Physics news on Phys.org
Since you know the angle a = pi/6, you should be able to calculate the x value where the blue area starts, then just integrate sqrt(r2 - x2) from there to r. That gets you the top half of the blue area.
 
It's so much easier to integrate the area of the triangle directly.
 
  • Like
Likes Skins and scottdave
willem2 said:
It's so much easier to integrate the area of the triangle directly.
That too. With what he has figured, it should be easy to figure the equation of the line for the triangle.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top