Where Am I Going Wrong in Calculating the Orbital Period?

AI Thread Summary
The discussion focuses on calculating the orbital period of Earth around the Sun using Newton's laws and gravitational principles. The user initially attempts to equate gravitational force and centrifugal force but struggles with the final calculations, resulting in an implausible period. Key advice includes recognizing that the mass of Earth cancels out in the equations, simplifying the process. The correct approach involves expressing velocity in terms of the orbital period and rearranging the equations accordingly. The user is encouraged to simplify the calculations further to find the correct orbital period.
Sci21
Messages
3
Reaction score
0

Homework Statement


Calculate the Orbital Period for the following: Earth's orbit to the Sun. I get stuck towards the end. I must use Newton's second law and have the Universal Law of Gravitation equal the Centrifugal Force.
Newton's gravitational constant: G= 6.67*10^-11 Nm^2/kg^2
Mass of Sun = 1.98*10^30 kg
Mass of the Earth 5.97*10^24 kg
Distance of the Earth from the Sun: 149.6*10^6
T = time


Homework Equations


Centrifugal Force = (mv^2)/r
v=(2(pi)(r))t
Force of Gravity = (GMm)/d^2
Mm being mass, and G/d^2 being acceleration.


The Attempt at a Solution


I multiplied Newton's gravitational constant by the mass of the Earth by the mass of the Sun, and then divided it all by the distance of the Earth from the Sun. I got 5.270280882*10^35 km. This was for the gravitational pull.

For the Centrifugal Force, I multiplied the mass of the Earth by v=((2(pi)(r))^2)/t^2. And put it over 149.6*10^6 km. I got (3.52229083*10^34 kg*km)/t^2.

I then set my two results equal to each other. Next, I multiplied by t^2 as that is the variable I am trying to find. This gave me 5.270280882*10^35 km*t^2 = 3.5229083*10^34 kg*km. Then, I divided by km on both sides to cancel it. I now have 5.270280882*10^35 t^2 = 3.5229083*10^34 kg. If I divide by the number on the left side of the equation and then square root both sides, I get a number than can't possibly be the Orbital Period of the Earth.


Can you tell where I am going wrong? Any advice is appreciated.
Thanks.
 
Physics news on Phys.org
Centrifugal Force = (mv^2)/r
Force of Gravity = (GMm)/d^2

For an orbit these two are equal so you have
mv^2/r = GMm/r^2

The mass of the Earth cancels, orbit's don't depend on the mass of the small object - that's why a spaceman and a space shuttle can float along in the same orbit.

v^2/r = GM/r^2

Work out v in terms of the circumference and the period ( v= 2 PI r/t) , do a bit of rearranging and you're there.
 
OK, thanks. I will try this and let you know how it goes.
 
((4(pi^2)(149.6 km^2))/t^2)/149.6 km=(6.67*10^-11(1.98*10^30 kg))/149.6 km^2

I do not understand what to do. If I cancel the 149.6 km from the denom. on the left side, I can't go much further.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top