Calculating the Osculating Circle for a Parametric Curve: A Scientific Approach

  • Thread starter Thread starter kasse
  • Start date Start date
  • Tags Tags
    Circle
kasse
Messages
383
Reaction score
1
I don't know if I've used the correct english terms in this text. Anyway, I'm working with the curve

x(t)=cos(t)
y(t)=sin(t)
z(t)=t

I have found the position and velocity vectors and scalars at t=pi. I've also calculated the unit tangent vector by dividing the velocity vector by the instant speed.

Next, I found the acceleration vector at t=pi and the curvature, and I'm now about to find the unit normal vector at t=pi. How can I do that without calculating the tangent and normal component of the acceleration first? (I'm not allowed to to it that way, and I'm going to use the information to find the osculating circle).
 
Physics news on Phys.org
The normal to the curve is the derivative of the unit tangent vector. To get the unit normal curve, of course, divide by its length. It happens to be particularly simple in this case!
 
Who says you 'aren't allowed'? The only other way I can think of to calculate an osculating circle is to take three points on the curve, say at t=pi, pi+delta, pi-delta, calculate the circle thru them and then let delta->0.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top