John O' Meara
- 325
- 0
Find the area of the surface swept out when the portion of the astroid x=a cos^3\theta, y=a sin^3\theta \mbox{ between } \theta=0 \mbox{ and } \theta=\pi \\ rotates about the x-axis.
ds=\frac{ds}{d\theta}d\theta \mbox{ where } \frac{ds}{d\theta}=\sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} \\. Now \frac{dx}{d\theta}=-3a cos^2(\theta)sin(\theta) \\<br /> \frac{dy}{d\theta}=3a sin^2(\theta)cos(\theta). Therefore \frac{ds}{d\theta}=\sqrt{9a^2(cos^4\theta sin^2\theta + sin^4\theta cos^2\theta)} \\. I simplify the expression as follows:
\frac{ds}{d\theta}=3a \sqrt{ cos^2\theta(\frac{1}{2}(1 + cos2\theta))(\frac{1}{2}(1 - cos2\theta)) + sin^2\theta(\frac{1}{2}(1 - cos2\theta))(\frac{1}{2}(1 + cos2\theta))} \\. This simplifies to
ds=3a\sqrt{(\frac{1}{4} - \frac{1}{4}cos^22\theta)(sin^2\theta + cos^2\theta)} d\theta. Therefore the integral required is: \int_0^{\pi}2\pi6a^2\sqrt{\frac{1}{4} - \frac{1}{4}cos^22\theta}sin^3\theta d\theta
(1)Am I on the correct path as regards simplifying the express I got for ds/d\theta?
(2) Did I simplify the expression correctly? Because the integral = zero with me.
ds=\frac{ds}{d\theta}d\theta \mbox{ where } \frac{ds}{d\theta}=\sqrt{(\frac{dx}{d\theta})^2 + (\frac{dy}{d\theta})^2} \\. Now \frac{dx}{d\theta}=-3a cos^2(\theta)sin(\theta) \\<br /> \frac{dy}{d\theta}=3a sin^2(\theta)cos(\theta). Therefore \frac{ds}{d\theta}=\sqrt{9a^2(cos^4\theta sin^2\theta + sin^4\theta cos^2\theta)} \\. I simplify the expression as follows:
\frac{ds}{d\theta}=3a \sqrt{ cos^2\theta(\frac{1}{2}(1 + cos2\theta))(\frac{1}{2}(1 - cos2\theta)) + sin^2\theta(\frac{1}{2}(1 - cos2\theta))(\frac{1}{2}(1 + cos2\theta))} \\. This simplifies to
ds=3a\sqrt{(\frac{1}{4} - \frac{1}{4}cos^22\theta)(sin^2\theta + cos^2\theta)} d\theta. Therefore the integral required is: \int_0^{\pi}2\pi6a^2\sqrt{\frac{1}{4} - \frac{1}{4}cos^22\theta}sin^3\theta d\theta
(1)Am I on the correct path as regards simplifying the express I got for ds/d\theta?
(2) Did I simplify the expression correctly? Because the integral = zero with me.