Calculating Well Depth Using the Speed of Sound

  • Thread starter Thread starter ramollari
  • Start date Start date
AI Thread Summary
To calculate the depth of a well using the time it takes for a stone to hit the water and the sound to travel back, one must consider both the acceleration due to gravity and the speed of sound. The total time of 3 seconds includes the time for the stone to fall and the sound to return. The depth can be calculated using the formula d = 0.5 * g * t^2, where g is the acceleration due to gravity. While some participants argue that the speed of sound is irrelevant, others emphasize that it must be included for an accurate calculation. Ultimately, the depth of the well is determined to be approximately 44.1 meters.
ramollari
Messages
433
Reaction score
1
A stone is thrown into a well and the sound is heard after 3s. How deep is the well?
 
Physics news on Phys.org
Write down the times the stone takes to hit the water and the sound takes to reach your ear.You'll find your answer in no time...

Daniel.
 
You may also want to factor in the acceleration of the stone due to gravity.
 
Dex, you silly!

This is an assignment about acceleration, not about the speed of sound!
 
DaveC426913 said:
Dex, you silly!

This is an assignment about acceleration, not about the speed of sound!

:mad:

Coul you explain both of your sentences? :mad:

Daniel.
 
Use 343 m/s for the speed of sound, and remember the time given has the time when the rock falls and then the sound wave gets to you. Also the sound will be moving with constant speed.
 
dextercioby said:
:mad:

Coul you explain both of your sentences? :mad:

Daniel.

I believe you missed the forest for the trees.

Your response seems to focus on the amount of time it takes the sound to reach your ear from the bottom of the well.

I believe the question is not about the speed of sound, it is about acceleration under gravity. The only relevant time delay concerns how fast the rock falls due to gravity. One should assume the delay due to propogation of sound is not a factor.

Maybe. I could be wrong.

It's grade K-12 homework.
 
DaveC426913 said:
I believe you missed the forest for the trees.

Your response seems to focus on the amount of time it takes the sound to reach your ear from the bottom of the well.

I believe the question is not about the speed of sound, it is about acceleration under gravity. The only relevant time delay concerns how fast the rock falls due to gravity. One should assume the delay due to propogation of sound is not a factor.

Maybe. I could be wrong.

It's grade K-12 homework.


Dave,i believe you need a pair of glasses... :-p My answer focuses on solving the problem:
dextercioby said:
Write down the times the stone takes to hit the water and the sound takes to reach your ear.You'll find your answer in no time...
,not on the speed of sound.It never mentions the speed of sound...:rolleyes:

Since the solver needs to find the depth,a priori unknown,he must include the time of sound propagation,because he has no idea whether it can,or not be neglected.

Daniel.
 
Doing it the "proper" way involves solving a quadratic. Assuming the speed of sound to be 340 m/s, there is an 8.5 % difference from the "easy" answer found by substitution.

I'm with Dexter on this one.
 
  • #10
You don't think the grade K-12 homework problem is more simply stated as:

"How far will an object fall in 3 seconds"

?
 
  • #11
DaveC426913 said:
You don't think the grade K-12 homework problem is more simply stated as:

"How far will an object fall in 3 seconds"

?

Don't u think that in the first 18 years of life one should know how to solve a quadratic equation?? :wink:

Daniel.
 
  • #12
edit: nvm nvm nvm
 
  • #13
d=.5at^2
d=.5(9.8)(3s)^2
d=44.1m


time*acceleration = velocity
time*velocity = distance
 
  • #14
ramollari did it say anything about the speed of sound in this question?
 
Back
Top