Calculus Problem: Simplifying xln(2x+1)-x+1/2ln(2x+1)+C

  • Thread starter Thread starter Stevecgz
  • Start date Start date
Stevecgz
Messages
68
Reaction score
0
In the solutions manual to my calculus text I don't understand how they are simplifying the following:

x\ln(2x+1)-x+\frac 1 2 \ln(2x+1)+C

to...

\frac 1 2 (2x+1)\ln(2x+1) -x +C

If someone could explain to me how they are simplifying this it would be appreciated.

Steve
 
Physics news on Phys.org
First let's group

x\ln(2x+1)+\frac{1}{2} \ln(2x+1)-x+C

Factor the \ln(2x+1)

\ln(2x+1)(x +\frac{1}{2})-x+C

Multiply by \frac{2}{2}

\ln(2x+1) \frac{2}{2} (x +\frac{1}{2})-x+C

\ln(2x+1) \frac{1}{2} (2x +\frac{2}{2})-x+C

\ln(2x+1) \frac{1}{2} (2x + 1)-x+C
 
Thank you much Cyclovenom, I understand now.

Steve
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top