Can a Compass Needle be Magnetized to Any Horizontal Direction?

In summary, it is possible to magnetize a compass needle so that it points in any direction, but doing so requires more energy than is necessary to magnetize it along its long axis.
  • #1
Hornbein
2,070
1,694
A compass needle can be magnetized to point to the north. Am I correct in thinking that the needle could have been magnetized to point to any other horizontal direction?
 
Physics news on Phys.org
  • #3
I don't see why you couldn't magnetize a piece of iron so that its field was not parallel to the long axis.
 
  • #4
Ibix said:
I don't see why you couldn't magnetize a piece of iron so that its field was not parallel to the long axis.
Right, this is what I had in mind.
 
  • #5
But if you did that, the torque due to an external field would be much less.
I would be inclined to have a plastic disc with an arrow E-W or NE-SW or whatever you want, but keep the long magnet beneath aligned N-S.
 
  • Like
Likes berkeman, DaveE and Lnewqban
  • #6
Whilst I would agree that a bar magnet can be magnetised along its length or across its width, I don't think it is possible to magnetise it in other directions. This is because the magnetising force, if oblique, can be resolved into vectors along and across the magnet. The vector along the magnet will create more flux than that across it, so the direction of magnetisation will be slewed towards the major axis. On the other hand, magnetising the bar across its width is possible because the magnetising force will be at right angles to the long dimension and not have a longitudinal vector. In summary, the applied magnetising force will always be resolved along the axes of symmetry and this will favour the major axis.
 
  • Informative
Likes anorlunda
  • #7
Iron has a cubic crystal structure so exhibits cubic magnetic anisotropy, i.e. it takes less energy to magnetise a sample along the directions parallel to the lattice edges ("easy axes"). You can still magnetise the sample at arbitrary angles to these favoured directions, at an energy cost which goes as sin2.
 
  • Like
Likes vanhees71
  • #8
I'm not sure whether you're saying, you can't magnetise a needle obliquely, or if you can, that it won't retain its magnetism?
If the former, could you not use five carefully shaped pieces of iron to 'fool' the magnetic field into going where you want it whilst magnetising the needle? (3 is the needle.)
And to mitigate the latter problem, use these pieces as 'keepers' ? (That might prejudice its utility as a compass! Though a compass that points on a bearing of 71.5 degrees magnetic, may not be the most useful compass in the world?)
compass.png
 

1. How do you magnetize a compass needle?

To magnetize a compass needle, you can use a strong magnet and stroke it along the needle in one direction several times. This will align the magnetic domains in the needle and make it magnetic.

2. Can any magnet be used to magnetize a compass needle?

Yes, any strong magnet can be used to magnetize a compass needle. However, it is recommended to use a bar magnet or a neodymium magnet for best results.

3. How long does it take to magnetize a compass needle?

The process of magnetizing a compass needle can take a few minutes. It depends on the strength of the magnet used and how many times it is stroked along the needle.

4. Why do we need to magnetize a compass needle?

A compass needle needs to be magnetized in order to accurately point towards the Earth's magnetic north pole. Without magnetization, the needle would not have a consistent direction and would not be able to function as a compass.

5. Can a compass needle lose its magnetism over time?

Yes, a compass needle can lose its magnetism over time due to exposure to strong magnetic fields or physical damage. It is recommended to regularly check and re-magnetize the needle if necessary to ensure accurate readings.

Similar threads

  • Classical Physics
Replies
2
Views
680
  • Introductory Physics Homework Help
Replies
16
Views
402
  • Introductory Physics Homework Help
Replies
11
Views
485
  • Introductory Physics Homework Help
Replies
31
Views
564
  • Classical Physics
Replies
1
Views
833
  • Classical Physics
Replies
19
Views
1K
Replies
7
Views
968
Replies
2
Views
2K
Replies
15
Views
1K
  • Electromagnetism
Replies
8
Views
1K
Back
Top