truesearch said:
Cabraham: I think you have defined 'gap' for us : "for all those electrons in the 'overlap region' there is zero energy gap". The Valence and conduction bands do not need to 'overlap completely' there just needs to be a 'contact' so that all energies in the conduction band are available to the valence band.
We seem to agree on the physics.
Does this mean that the statement from post 127:
"So far the naysayers have produced nothing. They talk a big game about Einstein, reference frames, etc., but cannot show me the fields working in a simple induction motor. Show me, please, how it is E force, & not B force that spins the rotor. So far all I get is people blowing smoke. Not 1 naysayer has addressed the motor operation question.
In a motor, we are not simply moving electrons from valence to conduction. We are exerting forces on wire loops resulting in torque & work being done. "
can be discounted as part of your explanation?...it seems logical to do so.
What did you think of my reference to the Hall effect in the conductors? Is this the physics explanation behind your 'tethering' analogy?
I have never met this 'tethering' analogy before.
Must dash to ebay now...
"What did you think of my reference to the Hall effect in the conductors? Is this the physics explanation behind your 'tethering' analogy?"
I am not sure that I understand your use of the word "tethering". I think that you are referring to the idea that the nonmagnetic forces that hold the charge carriers in the wire do the work. If this is what you mean, then the answer to the second question is "yes".
The voltage in the Hall effect is caused by the forces that keep the electric charge in the conducting plate. There would be no voltage if there wasn't an "edge" to the plate
The Hall effect is caused by an accumulation of electric charge at the edge of the plate. The electric charge carriers are pushed in the direction of current by the electric field in the circuit. This electric field does work, because the force is in the direction of motion. However, the electric field perpendicular to the circuit does no work at the stationary state because the forces are balanced.
In the bulk of the plate, the force by the electric field in the direction of the voltage drop precisely balances the force by the magnetic field opposite to the direction of the voltage drop. So in the bulk of the plate, there is no component of motion for the electric charge carriers perpendicular to the current. In the bulk of the plate, there are also no electric charge density. The electric field is continuous. Therefore, charge density of both moving charges and stationary charges is zero.
At the edge of the plate, there is a discontinuity of the electric field. Therefore, there is an electric charge distributed at the edge of the plate. The electric charge at one edge is equal in magnitude but opposite in sign from the electric charge on the other edge. If there wasn't this electric charge at the edge, there couldn't be a Hall voltage.
The electric charges do not cancel out at the edge. There is a discontinuity in electric field. Outside the plate, the electric field is zero. In the bulk, the electric field is that necessary to balance the magnetic force. Thus, the electric field has to give way to the surface force at the edge.
The only way such a charge can accumulate is if there is a "surface force" at the edge that prevents the electric charge from leaving the plate entirely. This surface force is equal and opposite the force of the magnetic field.
One can "tap" into the Hall voltage by putting electrodes on opposite sides of the plate. Electric current will flow from one electrically charged edge to the other. However, what does the work in this case is the electric field caused by the charge carriers that were caused by the surface force.
The magnetic field does cause the electric field that does the work. However, the magnetic field does not directly do the work. It changes the electric charge distribution, which changes the electric field which does the work.
Perhaps it would help if I qualify the statements better. A magnetic field can not "directly" do work on an electric charge. However, there are several ways that a magnetic field can "indirectly" do work on an electric charge.
A magnetic field can change charge distributions that create an electric field, for example. The electric field can directly do work. The magnetic field indirectly did the work.
A magnetic field can put a stress on a rotating body which is electrically charged. The change in electric charge distribution can directly do work on the electric charges in this rotating body. The magnetic field did not directly do work on the electric charges. So again, the magnetic field indirectly did work on the electric charges.
What has to be recognized here is that no every change in the distribution of electric charges involves directly doing work. The magnetic field can redistribute electric charges without doing work. The redistributed charges create an electric field, and that directly does the work.
What the Poynting theorem shows is that the work is directly determined by the dot product of the electric current and the electric field. However, this does not mean that the magnetic field does not play a role. The magnetic field can determine the direction of the electric current. The electric current can determine the direction of the electric field.
I suggest the following. In a motor or other dynamic process involving electric current, the magnetic field does not have any effect on work in the first few moments of operation. As the dynamic process approaches a stationary state, the magnetic field establishes an angle between the electric field and the electric current. Thus, the electric field ends up doing work on the electric charges.
The electric field that directly does the work. However, the magnetic field supervises the work.
That is how I think of electric motors and electric generators. The electric field does all the work, and the magnetic field supervises the work.
The magnetic field is a force supervisor! The magnetic field is all torque and no action!