Can a Shift Simplify the Triple Integral of cos(u+v+w)?

Nah_Roots
Messages
6
Reaction score
0
\int \int \int cos(u + v + w)dudvdw (all integrals go from 0 to pi).

I've tried using u substitution for each integral but I end up with a huge integral.
 
Last edited:
Physics news on Phys.org
I don't see why. To integrate cos(u+v+w)du, let x= u+ v+ w so dx= du. The integral becomes \int cos(x)dx= -sin(x)+ C= -sin(u+ v+ w)+ C. Evaluating that at 0 and pi gives -sin(pi+ v+ w)+ sin(v+ w). But sin(x+ pi)= -sin(x) so that is just 2 sin(v+w).

Now integrate 2sin(v+w) dv by letting x= v+ w so dx=dv.
 
I don't understand sin(x+ pi)= -sin(x). Is that an identity I am forgetting about?
 
Do you know what the graph of y= sin(x) looks like?
 
Oh, I see. It's a shift, correct?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top