Can an Integral Be Transformed into a Triple Integral?

  • Thread starter Thread starter Anna Kaladze
  • Start date Start date
  • Tags Tags
    Integral
Anna Kaladze
Messages
34
Reaction score
0
Dear All,
Sorry perhaps for a silly-looking question from someone who does not have very strong math skills.
In the attached pdf file, I describe a problem which I have been trying to unsuccessfully crack after trying a few manipulations.

Some intuitive thoughts are as follows: the inner two integrals over dy and dd give an area. Perhaps that area depends only on the "height" m. Suppose this area is a sheet of density 1/unit area. The final goal is to integrate E^area over dm.

Is the integral of exponential area of unit density/area = integral of unit area of exponential density/area? Can we pull that exponential "through" the integration?

Any other suggestions helping to transform (1) into a triple integral are highly appreciated.

Thanks a lot.

Anna.
P.S. This is not a h/w question, it is for my own research.
 

Attachments

Last edited:
Mathematics news on Phys.org
Have you made any progress on this. Perhaps someone has ideas about a simpler case.


Does \int_0^t \left[ e^{\int_y^t f(x) dx } \right] dy [/itex]<br /> <br /> capture what your asking about?<br /> <br /> We want to express this as a double integral with the integral signs both to the left of e.
 
Stephen Tashi said:
Have you made any progress on this. Perhaps someone has ideas about a simpler case.


Does \int_0^t \left[ e^{\int_y^t f(x) dx } \right] dy [/itex]<br /> <br /> capture what your asking about?<br /> <br /> We want to express this as a double integral with the integral signs both to the left of e.
<br /> <br /> Hi Tashi,<br /> Thanks a lor for your reply.<br /> I think it is not possible to trasform that integral the way I want. I had to do a sequence of NIntegrations as oppsed to doing a simple double integral.<br /> Regards,<br /> Anna.
 
Anna Kaladze said:
Dear All,
Sorry perhaps for a silly-looking question from someone who does not have very strong math skills.
In the attached pdf file, I describe a problem which I have been trying to unsuccessfully crack after trying a few manipulations.

Some intuitive thoughts are as follows: the inner two integrals over dy and dd give an area. Perhaps that area depends only on the "height" m. Suppose this area is a sheet of density 1/unit area. The final goal is to integrate E^area over dm.

Is the integral of exponential area of unit density/area = integral of unit area of exponential density/area? Can we pull that exponential "through" the integration?

Any other suggestions helping to transform (1) into a triple integral are highly appreciated.

Thanks a lot.

Anna.
P.S. This is not a h/w question, it is for my own research.

After looking at your integral, (the one inside your exponential), you are going to get a non-trivial region for the double integral that is of course dependent on your function (that is it's not going to be a rectangle or even any static region, but something more complex).

As for turning your equation into a triple integral, good luck with that. I can't think of any transform off the top of my head that will turn your exponential term into a relevant integral. Most transforms I've seen transform standard integrals that a linear into other linear integrals. The fact that you've got this non-linear relationship makes it a lot more complicated.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top