Mugged
- 103
- 0
Can someone help me with this, I need to prove that a flat vortex sheet of strength \gamma(s) at an angle of attack \alpha with the horizontal and has a p_{2} - p_{1} = \rho V_{\infty} \gamma cos(\alpha)
I just need to mathematically manipulate 2 formulas, namely the following two:
\gamma = u1 - u2 where u1 and u2 are the tangential flow velocities above and below the vortex sheet, respectively. I know that V_{\infty} is coming in parallel to the horizontal
Also, I need to use the Bernuolli equation: p_{1} + \frac{1}{2}\rho V_{1}^2 = p_{2} + \frac{1}{2}\rho V_{2}^2
this should be easy but i can't figure it out..any help is appreciated!
I just need to mathematically manipulate 2 formulas, namely the following two:
\gamma = u1 - u2 where u1 and u2 are the tangential flow velocities above and below the vortex sheet, respectively. I know that V_{\infty} is coming in parallel to the horizontal
Also, I need to use the Bernuolli equation: p_{1} + \frac{1}{2}\rho V_{1}^2 = p_{2} + \frac{1}{2}\rho V_{2}^2
this should be easy but i can't figure it out..any help is appreciated!