Dale said:
First, I have no idea what you could possibly mean by "the actual speed of light"].
Then permit me to clarify my simple meaning: I mean the outcome of a measurement on light that we regard as a speed measurement.
Second, there is nothing whatsoever that you can do in choosing your system of units which will mess up or in any way alter any of the dimensionless fundamental constants.
Of course that's wrong as you stated it, because you included no provision for making the unit system internally consistent. Consider the quantity that we call the fine structure constant. This is one of those fundamental unitless combinations of which I spoke. I realize you know this, but its value is given by e
2 over h-bar c. So if we are free to choose any system of units we like, with no regard to internal consistency, we can measure all charges in units of e, such that e
2=1, all actions in h-bar, such that h-bar = 1, and all speeds in c, such that c = 1. Voila, the fine structure constant is now unity, and perturbation theory doesn't work any more. What went wrong? A unit system like the one I just made cannot be made internally consistent. A general fact is that only unit systems that maintain the physically established values of fundamental unitless combinations of the physical constants can be internally consistent, and that's what I am talking about. Just saying c=1 leaves that rather unclear.
Of course, one can take c=1 self-consistently in part of what are called "natural units," where we also take h-bar = 1, but we cannot take e=1 in those units. We must take the value of e that gives the right result for the fine structure constant. So that's what I'm talking about, we always have to have an entire unit system in the backs of our minds, and it must be internally consistent, if we are setting c=1. Saying that the units of c is 1 light second per second is the way to keep track of that implicit unit system that we have in the backs of our minds, we are measuring distance in light seconds and time in seconds. We don't have to write that implicit choice in all our formulae, as it would get tedious to write 1 light second per second, but we do have to keep track of the fact that this is the unit system we are using.
Making c be unitless does not suddenly give units to the fine structure constant, and making c have a magnitude of 1 does not change its value. No matter what unit conventions you choose. It simply cannot happen.
One requires a consistent unit system, even if one says one is taking c=1. That statement by itself is not enough, you really do need a consistent system. Saying c is 1 light second per second is a way to keep track of the chosen unit system. One can not bother to explicitly keep track that way, but it is what one is doing, all the same, or one is risking an inconsistent unit system.