PFStudent
- 169
- 0
Homework Statement
http://img238.imageshack.us/img238/3648/hrwfop7echpt2128br6.jpg
Homework Equations
Coulomb's Law
Vector Form:
<br /> \vec{F}_{12} = \frac{k_{e}q_{1}q_{2}}{{r_{12}}^2}\hat{r}_{21}<br />
Scalar Form:
<br /> \vec{F}_{12} = \frac{k_{e}|q_{1}||q_{2}|}{{r_{12}}^2}<br />
Magnitude Form:
<br /> |\vec{F}_{12}| = \frac{k_{e}|q_{1}||q_{2}|}{{r_{12}}^2}<br />
The Attempt at a Solution
Yea, this is a pretty hard problem.
Here is how I tackled it:
First off, I let the angle \theta beginning on the positive axis and moving counter-clockwise equal \theta_{1} and let the bottom angle beginning on the positive axis and moving clockwise equal \theta_{2}.
The reason I did this was to preserve consistency when measuring angles,
Therefore,
<br /> \theta_{1} = \theta<br />
<br /> \theta_{2} = 2\pi - \theta<br />
<br /> q_{1} = q_{2} = -e<br />
<br /> q_{3} = q_{4} = -q<br />
<br /> q \leq 5e<br />
q_{1} \equiv fixed in place
q_{2} \equiv free to move
q_{3} \equiv fixed in place
q_{4} \equiv fixed in place
<br /> q_{1}(x_{1}, y_{1}) = q_{1}(-2R, 0) <br />
<br /> q_{2}(x_{2}, y_{2}) = q_{2}(-R, 0)<br />
<br /> q_{3}(x_{3}, y_{3}) = q_{3}\left(0, Rtan\left(\theta\right)\right)<br />
<br /> q_{4}(x_{4}, y_{4}) = q_{4}\left(0, Rtan\left(2\pi - \theta\right)\right)<br />
The problem asks for the three smallest values of theta for which electron 2 will be held in place, therefore,
<br /> \Sigma\vec{F}_{2} = 0<br />
<br /> 0 = \vec{F}_{21} + \vec{F}_{23} + \vec{F}_{24}<br />
Breaking into x-components,
<br /> 0 = \vec{F}_{21}_{x} + \vec{F}_{23}_{x} + \vec{F}_{24}_{x}<br />
<br /> -\vec{F}_{21}_{x} = \vec{F}_{23}_{x} + \vec{F}_{24}_{x}<br />
<br /> |{F}_{21}_{x}| = |{F}_{23}_{x} + {F}_{24}_{x}|<br />
<br /> F_{21}_{x} = |\vec{F}_{21}|cos\theta_{21}, \theta_{21} = 0 <br />
<br /> F_{21}_{x} = |\vec{F}_{21}|<br />
<br /> F_{23}_{x} = |\vec{F}_{23}|cos\theta_{23}, \theta_{23} = \theta + \pi<br />
<br /> F_{23}_{x} = |\vec{F}_{23}|cos\left(\theta + \pi\right) <br />
<br /> F_{24}_{x} = |\vec{F}_{24}|cos\theta_{24}, \theta_{24} = \pi - \theta<br />
<br /> F_{21}_{x} = |\vec{F}_{21}|cos\left(\pi - \theta)<br />
<br /> \left|\left(|\vec{F}_{21}|\right)\right| = \left|\left(|\vec{F}_{23}|cos\left(\theta + \pi\right)\right) + \left(|\vec{F}_{21}|cos\left(\pi - \theta\right)\right)\right|<br />
<br /> \left|\left(\frac{k_{e}|q_{2}||q_{1}|}{{r_{21}}^2}\right)\right| = \left|\left(\frac{k_{e}|q_{2}||q_{3}|}{{r_{23}}^2}\right)cos\left(\theta + \pi\right) + \left(\frac{k_{e}|q_{2}||q_{4}|}{{r_{24}}^2}\right)cos\left(\pi - \theta\right)\right|<br />
<br /> \left|\frac{k_{e}|q_{2}||q_{1}|}{{r_{21}}^2}\right| = \left|\frac{k_{e}|q_{2}||q_{3}|}{{r_{23}}^2}cos\left(\theta + \pi\right) + \frac{k_{e}|q_{2}||q_{4}|}{{r_{24}}^2}cos\left(\pi - \theta\right)\right|<br />
Canceling out: |k_{e}| and ||q_{2}||; from both sides.
<br /> \left|\frac{|q_{1}|}{{r_{21}}^2}\right| = \left|\frac{|q_{3}|}{{r_{23}}^2}cos\left(\theta + \pi\right) + \frac{|q_{4}|}{{r_{24}}^2}cos\left(\pi - \theta\right)\right|<br />
In addition noting the following,
<br /> r_{21} = R <br />
<br /> r_{23} = \sqrt{{R}^2+{y_{3}}^2}<br />
<br /> r_{24} = \sqrt{{R}^2+{y_{4}}^2}<br />
<br /> {|y_{3}|}^2 = {y_{3}}^2<br />
<br /> {|y_{4}|}^2 = {y_{4}}^2<br />
<br /> r_{23} = \sqrt{{R}^2+{y_{3}}^2} = r_{23} = \sqrt{{R}^2+\left({|y_{3}|}^2\right)}<br />
<br /> r_{24} = \sqrt{{R}^2+{y_{4}}^2} = r_{24} = \sqrt{{R}^2+\left({|y_{4}|}^2\right)}<br />
Where, |y_{3}| = |y_{4}| and <br /> r_{23} = r_{24}; so then letting,
<br /> |y_{3}| = |y_{4}| = y<br />
<br /> r_{23} = r_{24} = r_{2} = \sqrt{{R}^2+{\left(y\right)}^2}<br />
And noting: q_{3} = q_{4} = -q and q_{1} = -e;
then,
<br /> \left|\frac{|\left(-e\right)|}{{\left(R\right)}^2}\right| = \left|\frac{|\left(-q\right)|}{{\left(\sqrt{{R}^2+{\left(y\right)}^2}\right)}^2}cos\left(\theta + \pi\right) + \frac{|\left(-q\right)|}{{\left(\sqrt{{R}^2+{\left(y\right)}^2}\right)}^2}cos\left(\pi - \theta\right)\right|<br />
Through some algebra the following is arrived,
<br /> \left|\frac{|e|\left({R}^2+{y}^2\right)}{{R}^2}\right| = \left|q\right| \left|\left(cos\left(\theta + \pi\right) + cos\left(\pi - \theta\right)\right)\right|<br />
e > 0, then |e| = e
Noting that,
<br /> cos\left(\theta + \pi\right) = cos\left(\pi - \theta)\right)<br />
Then let,
<br /> cos\left(\theta + \pi\right) = cos\left(\pi - \theta)\right) = cos(\phi)<br />
<br /> \left|\frac{\left(e\right)\left({R}^2+{y}^2\right)}{{R}^2}\right| = \left|q\right| \left|\left(cos\left(\phi\right) + cos\left(\phi\right)\right)\right|<br />
<br /> \left|\frac{e\left({R}^2+{y}^2\right)}{{R}^2}\right| = \left|q\right| \left|2cos\left(\phi\right)\right|<br />
<br /> tan(\theta) = \frac{y_{3}}{R}<br />
<br /> tan(2\pi - \theta) = \frac{y_{4}}{R}<br />
<br /> y_{3} = Rtan(\theta)<br />
<br /> y_{4} = Rtan(2\pi - \theta)<br />
<br /> {y_{3}}^2 = {y_{4}}^2 = {y}^2<br />
<br /> {\left(tan(\theta)\right)}^2 = {\left(tan(2\pi - \theta)\right)}^2<br />
<br /> {tan}^{2}(\theta) = {tan}^{2}(2\pi - \theta)<br />
Then, let,
<br /> {tan}^{2}(\theta) = {tan}^{2}(2\pi - \theta) = {tan}^{2}(\gamma)<br />
So,
<br /> {y}^2 = {R}^{2}{tan}^{2}(\gamma)<br />
Then,
<br /> \left|\frac{e\left({R}^2+{y}^2\right)}{{R}^2}\right| = \left|q\right| \left|2cos\left(\phi\right)\right|<br />
<br /> \left|\frac{e\left({R}^2+\left({R}^{2}{tan}^{2}(\gamma)\right)\right)}{{R}^2}\right| = \left|q\right| \left|2cos\left(\phi\right)\right|<br />
<br /> \left|\frac{e\left({R}^2+{R}^{2}{tan}^{2}(\gamma)\right)}{{R}^2}\right| = \left|q\right| \left|2cos\left(\phi\right)\right|<br />
Ok, I note that I have two unknowns: q and \phi; I understand that I have an interval for q,
q \equiv on (-\infty, 5e]
However, how does this help?
I could also solve for |q|, and recognize that |q| = |q(\phi)|, and attempt to find values of \phi that would minimize or maximize |q(\phi)| through differentiation with respect to \phi, however I don’t quite think that is the right approach… :-/
I already tried working out the y-components, and ended up with the following,
<br /> \Sigma\vec{F}_{2} = 0<br />
<br /> 0 = \vec{F}_{21} + \vec{F}_{23} + \vec{F}_{24}<br />
<br /> 0 = \vec{F}_{21}_{y} + \vec{F}_{23}_{y} + \vec{F}_{24}_{y}<br />
<br /> -\vec{F}_{21}_{y} = \vec{F}_{23}_{y} + \vec{F}_{24}_{y}<br />
<br /> -\vec{F}_{21}_{y} = \vec{F}_{23}_{y} + \vec{F}_{24}_{y}<br />
Note, \vec{F}_{21}_{y} = 0,
<br /> -\left(0\right) = \vec{F}_{23}_{y} + \vec{F}_{24}_{y}<br />
<br /> -\vec{F}_{23}_{y} = \vec{F}_{24}_{y}<br />
<br /> |{F}_{23}_{y}| = |{F}_{24}_{y}|<br />
Working through the above with substitutions and algebra leads to the following,
<br /> sin\left(\theta+\pi\right) = sin\left(\pi-\theta\right)<br />
Which is another dead end…
Yea, so this problem is really hard and I’m really stuck.
Any help is appreciated,
-PFStudent
Last edited by a moderator: