Can Damping Values for Aluminum Cantilever Beams Be Easily Found?

AI Thread Summary
The discussion revolves around estimating the damping values for aluminum cantilever beams in the context of a robotic arm's vibrations. The user is developing an Excel program to calculate the time it takes for the arm to stop vibrating after moving. They reference a specific equation from their systems and vibrations textbook to model the vibrations and seek a simple solution for the time constant. However, they express difficulty in finding damping coefficients as material properties and realize the complexity of the problem, as indicated by a NASA paper. The user is looking for sources or experimental data on damping values for aluminum cantilever beams to aid in their calculations.
Feodalherren
Messages
604
Reaction score
6
Hi fellow mechanical engineers,

I am designing a rather simple excel program for work that deals with vibrations in robots. Imagine a robot that is made up of linear axes that can move in x,y,z sort of like a 3D printer, take a look at this picture:
https://pasteboard.co/8hvV5vf.png

Focusing on the part that is highlighted in pink, imagine that it is a solid beam. Now imagine that it picks up some mass and then starts moving in the x direction and then stops before it starts moving in the y direction. I need to find a quick and dirty way of estimating the amount of time that it takes for the arm to stop vibrating.

I'm planning on going back to my systems and vibrations textbook for this, more precisely the following equation:

mx''+cx'+kx=F

My hope is to get a rather simple solution of the form

x(t)=e^(-ζωt)[Asin(ωt)+Bcos(ωt)]+C

which I can use to find the the time constant and then use that to find an approximate time for when the vibrations are small enough for the robot to start moving again.

Have I simplified this problem too much? I'm starting to think so since I can't find any information regarding a damping coefficient as a material property, which I just assumed that it was. I was going to ignore damping from air and model the beam as a cantilever beam.

I found this NASA paper on it:
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19650021096.pdf

which seems to suggest that it's far more complicated than I originally thought. So my question is, is it possible to find the damping values for a cantilever beam made out of aluminium anywhere?
 
Engineering news on Phys.org
Thank you, that was very helpful!
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top