QuantumJG
- 30
- 0
In quantum physics we've defined:
\psi (x) = \sqrt{ \dfrac{1}{2 \pi \hbar} } \int^{ \infty }_{- \infty } \phi (p) exp \left( i \dfrac{px}{ \hbar}} \right) dp
Now,
a(k) \equiv \sqrt{ \hbar } \phi (p) and k = \dfrac{p}{ \hbar }
Where,
a(k) = \left\{ \begin{array}{cccc} 0 & k < - \dfrac{ \epsilon }{2} \\ \sigma + \dfrac{2 \sigma }{ \epsilon } k & - \dfrac{ \epsilon }{2} < k < 0 \\ \sigma - \dfrac{2 \sigma }{ \epsilon } k & 0 < k < \dfrac{ \epsilon }{2} \\ 0 & k > \dfrac{ \epsilon }{2} \\ \end{array}
Normalizing a(k) I get σ to be:
\sigma = \sqrt{ \dfrac{3}{ \epsilon } }
But I can't get anything reasonable from the Fourier Integral.
\psi (x) = \sqrt{ \dfrac{1}{2 \pi \hbar} } \int^{ \infty }_{- \infty } \phi (p) exp \left( i \dfrac{px}{ \hbar}} \right) dp
Now,
a(k) \equiv \sqrt{ \hbar } \phi (p) and k = \dfrac{p}{ \hbar }
Where,
a(k) = \left\{ \begin{array}{cccc} 0 & k < - \dfrac{ \epsilon }{2} \\ \sigma + \dfrac{2 \sigma }{ \epsilon } k & - \dfrac{ \epsilon }{2} < k < 0 \\ \sigma - \dfrac{2 \sigma }{ \epsilon } k & 0 < k < \dfrac{ \epsilon }{2} \\ 0 & k > \dfrac{ \epsilon }{2} \\ \end{array}
Normalizing a(k) I get σ to be:
\sigma = \sqrt{ \dfrac{3}{ \epsilon } }
But I can't get anything reasonable from the Fourier Integral.