Can L'hopital's Rule be Applied to this Limit?

  • Thread starter Thread starter hadi amiri 4
  • Start date Start date
  • Tags Tags
    l'hopital Limit
hadi amiri 4
Messages
98
Reaction score
1
\lim_{x \rightarrow infinity}/ left(\frac{\1+Tan\frac{/pi}{2x}}{1+sin\frac{/pi}{3x}}}right)^x
 
Physics news on Phys.org


sorry i made mistake in typing
 


So what does the limit problem actually look like?
 


hadi amiri 4 said:
\lim_{x \rightarrow infinity}/ left(\frac{\1+Tan\frac{/pi}{2x}}{1+sin\frac{/pi}{3x}}}right)^x

I assume you meant

\lim_{x \rightarrow {\infty}} \left(\frac{1 \, + \, tan\left(\frac{\pi}{2x}\right)}{1 \, + \, sin \left(\frac{\pi}{3x}\right)} \right)^{x}

then I would suggest letting that = y, then take ln of both sides and you should get something like:

ln(y) \, = \, \lim_{x \rightarrow {\infty}} \frac{ln\left(\frac{1 \, + \, tan\left(\frac{\pi}{2x}\right)}{1 \, + \, sin \left(\frac{\pi}{3x}\right)} \right)}{\frac{1}{x}}

which if you "plug in" the limit should give you \frac{0}{0} making it a candidate for L'hopital. Try that.
 

Similar threads

Replies
9
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
6
Views
2K
Replies
7
Views
3K
Replies
3
Views
2K
Back
Top