transgalactic
- 1,386
- 0
i need to prove that this equation is true
<br /> \frac{d^n}{dx^n}\left(x^{n-1}e^{1/x}\right) = (-1)^n\frac{e^{1/x}}{x^{n+1}}<br />
i tried by induction
<br /> f_n(x) \equiv x^{n-1}e^{1/x}<br />
<br /> g_n(x) \equiv (-1)^n\frac{e^{1/x}}{x^{n+1}}<br />
this is the pattern if i keep differentiating the base case.
<br /> \frac{{d^{k + 1} }}{{dx^{k + 1} }}f_{n + 1} (x) = x\frac{{d^{k + 1} }}{{dx^{k + 1} }}f_n (x) + (k + 1)\frac{{d^k }}{{dx^k }}f_n (x)<br />
then i tried to differentiate the "n" equation inorder to get to the n+1 equation
<br /> \frac{{d^{n + 1} }}{{dx^{n + 1} }}f_n (x) = \frac{{d^{} }}{{dx^{} }}g_n (x) = ( - 1)^n {\rm{[}}e^{1/x} ( - \frac{1}{{x^2 }}{\rm{)}}x^{n + 1} + (n + 1)x^n e^{1/x} {\rm{] }} \\<br />
but it didnt work
??
<br /> \frac{d^n}{dx^n}\left(x^{n-1}e^{1/x}\right) = (-1)^n\frac{e^{1/x}}{x^{n+1}}<br />
i tried by induction
<br /> f_n(x) \equiv x^{n-1}e^{1/x}<br />
<br /> g_n(x) \equiv (-1)^n\frac{e^{1/x}}{x^{n+1}}<br />
this is the pattern if i keep differentiating the base case.
<br /> \frac{{d^{k + 1} }}{{dx^{k + 1} }}f_{n + 1} (x) = x\frac{{d^{k + 1} }}{{dx^{k + 1} }}f_n (x) + (k + 1)\frac{{d^k }}{{dx^k }}f_n (x)<br />
then i tried to differentiate the "n" equation inorder to get to the n+1 equation
<br /> \frac{{d^{n + 1} }}{{dx^{n + 1} }}f_n (x) = \frac{{d^{} }}{{dx^{} }}g_n (x) = ( - 1)^n {\rm{[}}e^{1/x} ( - \frac{1}{{x^2 }}{\rm{)}}x^{n + 1} + (n + 1)x^n e^{1/x} {\rm{] }} \\<br />
but it didnt work
??
Last edited: