Can Navier Stokes equations explain pressure on a stationary body's surface?

AI Thread Summary
The discussion centers on using the Navier-Stokes equations to calculate pressure on a stationary body's surface in a fluid flow. It highlights that while shear stress is relevant for a stationary body, the impulse term becomes significant if the body is in motion. The conversation emphasizes the importance of the local temporal derivative, which cannot be neglected when the body has a non-zero velocity, transforming the problem into an unsteady one. The participants agree on the Galilean invariance of the Navier-Stokes equations and the need to consider local variations in fluid dynamics. Overall, the key takeaway is the necessity of accounting for motion and its effects on pressure calculations.
schettel
Messages
3
Reaction score
0
Consider a stationary body within the flow of some fluid. I want to calculate pressure on the surface of the body. From the Navier Stokes (incompressible, stationary, no volume forces) equations, you would get something like:
dp/dx=-rho(u du/dx+v du/dy+w du/dz)+eta(d²u/dx²+d²u/dy²+d²u/dz²)
...likewise for the other coordinates.
This means that, when calculating pressure on the surface of my body, impulse (rho(..) on the right hand side of the equation) and wall shear stress (eta(..)) come into play. That seams quite logical. But my body is not moving, so, assuming a no-slip condition for its surface, u=v=w=0, which leaves me only with shear stress.
If the body is moving and the fluid is not, you should still get the same pressure on the surface. But in this case, the first term on the right hand side of the equation (impulse) is not zero.
There must be a mistake in my reasoning. Can anybody tell me what it is?
Maybe it has something to do Euler and Lagrange?
 
Engineering news on Phys.org
You're asking if N-S is Galilean invariant, right? It is.
The solution lies in that you cannot neglect the local temporal derivative if you shift to a description in which the body has a non-zero velocity.

This makes sense, because roughly, the dynamics in the fluid at a field point should primarily depend upon the distance from the field point to the body.
 
arildno said:
You're asking if N-S is Galilean invariant, right? It is.
The solution lies in that you cannot neglect the local temporal derivative if you shift to a description in which the body has a non-zero velocity.

This makes sense, because roughly, the dynamics in the fluid at a field point should primarily depend upon the distance from the field point to the body.

Welcome to Mech&Aero forum. Glad to see you here, Arildno! :smile:

I do agree with your answer. The local variation of the velocity \partial u/\partial t is non zero if the body is in motion. The problem is transformed into an unsteady one.
 
I do poke my nose into here on occasion..
Thanks for the welcome, though..:smile:
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top