Can Polynomials of Degree n be Bounded by Constants for Large |z| Values?

  • Thread starter Thread starter oab729
  • Start date Start date
  • Tags Tags
    Analysis
oab729
Messages
12
Reaction score
0

Homework Statement


Show that for a polynomial of degree n, P(z), that for all z with |z| sufficiently large, there are positive constants c,d, s.t. c|z|^n < |P(z)| < d|z|^n


Homework Equations





The Attempt at a Solution


Assume it is true for n-1.
p(z)=az^n+q(z)
Then for z with sufficiently large |z|, there exist e,f s.t. e|z|^(n-1) < |q(z)| < f|z|^(n-1).

No idea how to continue.
 
Physics news on Phys.org
Try doing |P(z)| < d|z|^n and c|z|^n < |P(z)| as two different problems. Use triangle inequality. Try it with actual example polynomials first if you're still lost.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top