jk22
- 732
- 25
Is the relativistic Snell's law : $$\frac {sin\theta_1}{sin\theta_2}=\frac {c_2}{c_1}\sqrt {\frac {c^2-c_2^2}{c^2-c_1^2}} $$ ? OR where could I check this ?
There is no proper time or frame applicable to a photon (or light in general). See our FAQ linked below. Thus, this question is meaningless. The question of refraction across a refraction boundary where one one medium is moving relative to the other is, on the other hand, a very meaningful question for which relativity predicts significant modifications to Snell's law, as noted in my prior post.jk22 said:Relativistic in the sense of local time of the photon through the medium not motion of the medium.
jk22 said:Indeed my question was not very clear :
So it is impossible to find the refraction law for a particle (not forcedly a photon) moving at speed c1 then c2 by passing to the frame 1 and then 2 computing the minimum and then come back to the rest frame of the interface ?
Trying to do the latter I came across : the following formula $$\frac{tan(\theta_1)}{tan(\theta_2)}\sqrt{\frac{1+(1-c_2^2/c^2)tan(\theta_2)^2}{1+(1-c_1^2/c^2)tan(\theta_1)^2}}=\frac{c_1}{c_2}$$
Which does not give Snell's law back. I then thought that it is because it lacks a point like infinite acceleration at the interface. Hence doing this problem would need an accelerated frame with a continuous acceleration and then take the limit of the time of the acceleration to zero ? Then computing the minimal time in the moving frame would need the covariant derivative (concept of General relativity).
So I suppose finding Snell's law by passing to a moving frame is simply impossible due to a to high complexity.