Calculate Force of Gravity of Earth and Moon | FgE = FgM | 3.8 x 10^7 Answer

  • Thread starter Thread starter Alameen Damer
  • Start date Start date
AI Thread Summary
The discussion focuses on calculating the gravitational force between the Earth and the Moon, specifically aiming to achieve a net gravitational force of zero. The equation used is FgE = FgM, where FgE is the gravitational force of Earth and FgM is that of the Moon. The initial calculations led to an answer of 4.2 x 10^7, which is close to the book's answer of 3.8 x 10^7. The user explored using the quadratic formula to find the distance from the Earth to a rocket, ultimately questioning if there is a simpler method to reach the solution. The conversation emphasizes the need for detailed work and alternative approaches to solving the problem.
Alameen Damer
Messages
76
Reaction score
0

Homework Statement



Homework Equations


fg=Gm1m2/r^2

The Attempt at a Solution



Let FgE be the force of gravity of Earth, and FgM be force of gravity of the moon.

We need a net gravitational force of 0 N. So:

FgE-FgM=0
FgE=FgM

Can someone attempt to solve this and see if the answer matches the book answer which is 3.8 x 10^7.

I have tried this with many different methods, and the closest I got was 4.2 x 10^7. So if someone gets the same answer as me or the book, can you please reply.
 

Attachments

  • upload_2015-9-6_2-22-47.png
    upload_2015-9-6_2-22-47.png
    11.9 KB · Views: 449
Physics news on Phys.org
Show your work in detail, please. And what is 4.2 x 10^7? mass? distance? force? In what unit?
 
Distance/radius so its in m, and I got the answer eventually having to use the quadratic formula.
 
What I did was:

Let mE be mass of Earth
Let mM be mass of the moon
Let mR be mass of the rocket

GmEmR/r^2=GmMmR/(3.8x10^8-r)^2

(3.8x10^8-r)^2(GmEmR)=r^2(GmMmR)

G and MR cancel

(3.8x10^8-r)^2(mE)=r^2(mM)

(5.926x10^24)r^2-4.56x10^34r+8.664x10^41=0

I then used the quadratic formula to solve for r, getting 342017105.1 m. This is the radius from the Earth to the rocket to distance from the moon to the rocket would be:
3.8x10^8m-342017105.1 m=3.8x10^7m.

HOWEVER, i am wondering is there an easier approach to solving this?
 
Alameen Damer said:
What I did was:

Let mE be mass of Earth
Let mM be mass of the moon
Let mR be mass of the rocket

GmEmR/r^2=GmMmR/(3.8x10^8-r)^2

(3.8x10^8-r)^2(GmEmR)=r^2(GmMmR)

G and MR cancel

(3.8x10^8-r)^2(mE)=r^2(mM)

You can write the equation in the form
(3.8x10^8-r)^2=r^2(mM/mE).
Take the square root of both sides, you get a first order equation.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top