MHB Can squares of any size fit perfectly into a 16.5cm x 14cm rectangle?

  • Thread starter Thread starter TPceebee
  • Start date Start date
  • Tags Tags
    2d
TPceebee
Messages
1
Reaction score
0
Hi, I'm a product designer looking for some help.

I need to fit squares into the dimensions of a rectangle. There can be any amount of squares just as long as the squares are complete and their dimensions are complete decimals.

The dimensions are 16.5cm x 14cm. I don't want the squares to be any larger than 2.5cm or any smaller than 0.5cm.
 
Mathematics news on Phys.org
I would convert the dimensions of the rectangle to mm, so that you have 165 mm X 140 mm. Next, let's look at the prime factorization of both measures:

$$140=2^2\cdot5\cdot7$$

$$165=3\cdot5\cdot11$$

We see that the only common factor is 5, so your only choice (for complete tessellation) is to tile the rectangle with squares 5 mm X 5 mm, or 0.5 cm X 0.5 cm.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top