I Can this type of transformation be non-linear?

snoopies622
Messages
852
Reaction score
29
I've finally worked out a derivation of the Lorentz transformation that doesn't use the now out of favor i^2=-1, but it still has one weak spot: it assumes that the transformation is linear. It seems quite reasonable to me that it would be linear since it has to graph straight lines on to straight lines (since the laws of mechanics should be the same in both reference frames) but how can I go from that fact to

x' = Ax + Bt
t' = Dx + Et

where A,B,D and E are constants without any doubt? Is it mathematically possible for a transformation that requires any straight line in one coordinate system to become a straight line in the other coordinate system to assume some other, non-linear form?
 
Physics news on Phys.org
The transformation you wrote is linear by construction: ##\begin{bmatrix}x'\\t' \end{bmatrix}=\begin{bmatrix}A&B\\ D&E \end{bmatrix}\cdot \begin{bmatrix}x\\t \end{bmatrix}##. To get something non-linear you will have to use non-linear terms.

Are you talking about one straight line or all straight lines? You could add a constant term, so it still transforms lines into lines, but isn't linear anymore, however, affine linear.
 
I start with the premise that all straight lines in (x,t) are transformed into straight lines into (x',t') and vice versa and that (0,0) in one coordinate system is (0,0) in the other. Does it then follow that the transformation must look like

x' = Ax + Bt
t' = Dx + Et

where A,B, D, E are constants, and how do I know this for certain? Thanks.
 
snoopies622 said:
I start with the premise that all straight lines in (x,t) are transformed into straight lines into (x',t') and vice versa and that (0,0) in one coordinate system is (0,0) in the other. Does it then follow that the transformation must look like

x' = Ax + Bt
t' = Dx + Et

where A,B, D, E are constants, and how do I know this for certain? Thanks.
You want to show, that for a given transformation ##f## it has to hold: ##f##(straight)=straight which means ##f(\lambda \vec{a}+\mu \vec{b})= \lambda f(\vec{a})+\mu f(\vec{b})## for all ##\vec{a},\vec{b},\lambda,\mu\,.##
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top