nsiderbam
- 2
- 0
Homework Statement
Use your knowledge of vector algebra to verify the following identity:
<br /> \vec{\Omega} \cdot \nabla n = \nabla \cdot \vec{\Omega} n<br /> <br />
Homework Equations
Divergence product rule
<br /> \nabla \cdot (\vec{F} \phi) = \nabla (\phi) \cdot \vec{F} + \phi (\nabla \cdot \vec{F})<br />
The Attempt at a Solution
By the product rule,
<br /> \nabla \cdot (\vec{\Omega} n) = \nabla n \cdot \vec{\Omega} + n (\nabla \cdot \vec{\Omega})<br />
Therefore,
<br /> \vec{\Omega} \cdot \nabla n = \nabla \cdot \vec{\Omega} n = \nabla \cdot (\vec{\Omega} n) = \nabla n \cdot \vec{\Omega} + n (\nabla \cdot \vec{\Omega})<br />
and
<br /> 0 = n (\nabla \cdot \vec{\Omega})<br />
I'm not quite sure what I'm doing wrong. Maybe it's a grouping thing. Any help would be appreciated.