Can you please check my translation?

  • Thread starter Thread starter eoghan
  • Start date Start date
  • Tags Tags
    Translation
eoghan
Messages
201
Reaction score
7
Hi!
I don't know if this is the right place to post this topic, if there is a better place, please let me know and I'll move my post.
I have to write a resume of my project and I have to write it in English. My mother language is Italian and I'm not so good in writing in English, so can you please check if my translation is correct? Thank you very much.


Quantum mechanics represented a big revolution in the way we conceive the world and the reality all around us. Nevertheless the Schr ̈odinger equation can be exactly solved only in few situations; it is thus interesting to develop pro- grams in order to numerically determine the evolution of several systems. That was, indeed, the goal of this work, where a C++ code was written to integrate the Schr ̈odinger equation in two and three spatial dimensions and to show the real-time evolution of the wave-packet.
The method used is based on Lie-Trotter formula in order to write the time evolution operator as an infinite product of terms diagonal in coordinate and momentum space. This product is written as a finite number of terms by the discretization of the temporal evolution in small intervals ∆t; the error intro- duced in this way is of the order of (∆t)2). In order to evolve the wave function, first it is multiplied by the factor diagonal on the coordinate basis; then the wave function is written in the basis of the momentum space and it’s multiplied by the factor diagonal in that basis and finally the wave function is written back in the coordinate space and multiplied by the third factor of the split evolution operator. The two basis are linked by the Fourier transform.
If a magnetic field is present, it can be shown that its effect can be accomplished with the introduction of an appropriate phase. Any substantial difficulty is in- troduced if the spin interaction is also considered. It can be shown that the spin coupling with the magnetic field can be achived with a matrix inserted in the evolution operator and considering the wave function as a two-component spinor.
A fundamental part in the development of the code was the validation of the results. To do this, the numerical results have been compared with the analytic solutions for some cases where the exact solution of the Schr ̈odinger equation is available. These include the free particle, the harmonic oscillator, the infinite-height potential barrier and the spin megnetic resonance. In conclusion, the code can manage any initial state and any potential, showing the real-time evolution of the wave function and visually displaying the strictly quantum behavior so distant from our daily experience.
 
Physics news on Phys.org
eoghan said:
Hi!
I don't know if this is the right place to post this topic, if there is a better place, please let me know and I'll move my post.
I have to write a resume of my project and I have to write it in English. My mother language is Italian and I'm not so good in writing in English, so can you please check if my translation is correct? Thank you very much.


Quantum mechanics represented a big revolution in the way we conceive the world and the reality all around us. Nevertheless the Schr ̈odinger equation can be exactly solved only in few situations; it is thus interesting to develop pro- grams in order to numerically determine the evolution of several systems. That was, indeed, the goal of this work, where a C++ code was written to integrate the Schr ̈odinger equation in two and three spatial dimensions and to show the real-time evolution of the wave-packet.
The method used is based on Lie-Trotter formula in order to write the time evolution operator as an infinite product of terms diagonal in coordinate and momentum space. This product is written as a finite number of terms by the discretization of the temporal evolution in small intervals ∆t; the error intro- duced in this way is of the order of (∆t)2). In order to evolve the wave function, first it is multiplied by the factor diagonal on the coordinate basis; then the wave function is written in the basis of the momentum space and it’s multiplied by the factor diagonal in that basis and finally the wave function is written back in the coordinate space and multiplied by the third factor of the split evolution operator. The two basis are linked by the Fourier transform.
If a magnetic field is present, it can be shown that its effect can be accomplished with the introduction of an appropriate phase. Any substantial difficulty is in- troduced if the spin interaction is also considered. It can be shown that the spin coupling with the magnetic field can be achived with a matrix inserted in the evolution operator and considering the wave function as a two-component spinor.
A fundamental part in the development of the code was the validation of the results. To do this, the numerical results have been compared with the analytic solutions for some cases where the exact solution of the Schr ̈odinger equation is available. These include the free particle, the harmonic oscillator, the infinite-height potential barrier and the spin megnetic resonance. In conclusion, the code can manage any initial state and any potential, showing the real-time evolution of the wave function and visually displaying the strictly quantum behavior so distant from our daily experience.

'achived' is actually spelled 'achieved', 'megnetic' should be 'magnetic'. That's all I've found so far. But you still aren't going to pass for a native English speaker. The spelling and grammar are too good. :)
 
Thank you very much!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top