Can you prove E_{ij}AE_{kl}=a_{jk}E_{il} with the given formula for A?

  • Thread starter Thread starter lesliemath
  • Start date Start date
  • Tags Tags
    Matrix
lesliemath
Messages
1
Reaction score
0
matrix -- proving need help!

please help i have no idea how to do this question. please give me some hints :(
 

Attachments

  • math.jpg
    math.jpg
    40.8 KB · Views: 406
Physics news on Phys.org


Part (a) is asking you to show that E_{ij}AE_{kl}=a_{jk}E_{il}, and it's giving you a formula for A. So why don't you start by writing E_{ij}AE_{kl}=, and then use the formula for A that you were given?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top