Can You Solve This K11B Equation Correctly?

  • Thread starter Thread starter Zamael88
  • Start date Start date
Zamael88
Messages
6
Reaction score
0

Homework Statement



http://img193.imageshack.us/img193/9933/k11b.jpg

Is this correct?
 
Last edited by a moderator:
Physics news on Phys.org
No. Prove it to yourself that it isn't by taking the derivative of -e^(x^2)/(2x), and seeing if you get e-(x^2).
 
I will try. Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top