- 9,621
- 9
The question is to find the following intergal:
\int x\cdot u^{\frac{1}{2} where u = 2x -1.
= \int x\cdot u^{\frac{1}{2}} \;\; \frac{1}{2} du
u = 2x -1 \Rightarrow x = \frac{u+1}{2}
= \int \frac{1}{2}(u+1)\cdot u^{\frac{1}{2}} \;\; \frac{1}{2} du \;\; = \int \frac{1}{4}\left( u^{\frac{3}{2}} + u^{\frac{1}{2}}\right) \;\; du
= \frac{2}{20} u^{\frac{5}{2}} + \frac{2}{12} u^{\frac{3}{2}} = \frac{1}{10} u^{\frac{5}{2}} + \frac{1}{6} u^{\frac{3}{2}}
But this isn't going to give me the correct answer. Can anybody see where I've gone wrong? Thank's
\int x\cdot u^{\frac{1}{2} where u = 2x -1.
= \int x\cdot u^{\frac{1}{2}} \;\; \frac{1}{2} du
u = 2x -1 \Rightarrow x = \frac{u+1}{2}
= \int \frac{1}{2}(u+1)\cdot u^{\frac{1}{2}} \;\; \frac{1}{2} du \;\; = \int \frac{1}{4}\left( u^{\frac{3}{2}} + u^{\frac{1}{2}}\right) \;\; du
= \frac{2}{20} u^{\frac{5}{2}} + \frac{2}{12} u^{\frac{3}{2}} = \frac{1}{10} u^{\frac{5}{2}} + \frac{1}{6} u^{\frac{3}{2}}
But this isn't going to give me the correct answer. Can anybody see where I've gone wrong? Thank's