Strategies for Simplifying Fractions with Exponential Terms

  • Thread starter Thread starter Andrusko
  • Start date Start date
  • Tags Tags
    Fraction Simplify
Andrusko
Messages
42
Reaction score
0
Fraction is:

\frac{1-e^{-x}}{1-e^{x}}

and it's meant to go to:

-e^{-x}

I can't make it look like it needs to. I tried splitting it up but that goes nowhere.

What other strategies are there for simplifying fractions like this?

Thanks for any help.
 
Physics news on Phys.org
1-e^{-x} = -e^{-x}(...)
 
1 - e^{-x} = -e^{-x} + 1

? Still don't get it sorry...
 
<br /> 1-e^{-x} = -e^{-x}(... - 1)<br />
 
What do you get when you multiply both the numerator and the denominator by -e^{-x}?
 
Or multiply numerator and denominator by the "conjugate", 1+ e-x.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top