Capacitor exercise -- Calculate the force needed to withdraw the dielectric

Click For Summary

Homework Help Overview

The discussion revolves around calculating the force required to withdraw a dielectric from a capacitor. The subject area includes concepts related to capacitance, potential energy, and electrostatics.

Discussion Character

  • Exploratory, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss the calculation of capacitance and potential energy, exploring the relationship between these quantities and the force derived from potential energy. There are questions about the correct expressions for capacitance and energy, particularly regarding the variables involved.

Discussion Status

Some participants have offered guidance on the expressions for capacitance and potential energy, while others are questioning the assumptions regarding fixed quantities and the role of voltage in the equations. Multiple interpretations of the problem are being explored without a clear consensus.

Contextual Notes

There is a focus on ensuring that the equations used are consistent with the conditions of the problem, particularly regarding the constancy of charge and the implications of moving the dielectric.

Jack99123
Messages
2
Reaction score
0
Homework Statement
Between two conducting plates (length ## l ##, width ## w ## and distance ## d ##) there is an insulator (permittivity \epsilon). The capacitor is charged with voltage ## V ## (charge ## Q ##). After this the voltage source is removed. The insulator is moved to the left in the direction of ## l ## a distance ## l-x ##. Calculate the force that the electric field tries to drag the insulator back
to between the conducting plates. (Hint. F=-∇U, expression for potential energy with
capacitance, the capacitor charge is constant, voltage changes)
Relevant Equations
##C_e=C_1+C_2##
##U=\frac{1}{2}*C*V^2##
##C=\epsilon \frac{A}{d} ##
##\vec F =-\nabla U##
First, I think that I need to calculate the capacitance. It is ## C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d} ##. After that I should calculate the potential energy. It is ##U=\frac{1}{2}*C*V^2 ##. After that I should take its gradient to get the force. So ##\vec F =-\nabla U=-\frac{d}{dx}U*\vec i=-\frac{(\frac{-w*\epsilon_0}{d}+\frac{\epsilon*w}{d})*v^2}{2}*\vec i ##
. Is this correct and if it's not, could you please help me?
fysiikkakuva1.png
 
Last edited:
Physics news on Phys.org
Jack99123 said:
First, I think that I need to calculate the capacitance. It is ## C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d} ##. After that I should calculate the potential energy. It is ##U=\frac{1}{2}*C*V^2 ##. After that I should take its gradient to get the force. So ##\vec F =-\nabla U=-\frac{d}{dx}U*\vec i=-\frac{(\frac{-w*\epsilon_0}{d}+\frac{\epsilon*w}{d})*v^2}{2}*\vec i ##
. Is this correct and if it's not, could you please help me?View attachment 280047
Your overall strategy looks OK but note:

1) You can’t have voltage (V) in your function for U(x) . (Why not?) You need to express U(x) using only x and fixed values. What quantity remains fixed when the insulator (dielectric) is moved?

2) Your equation:
##C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d}##
looks correct, but for clarity, note that you have two parallel capacitors, one with area ##xw## and the other with area ##(l-x)w##. A clearer expression for C (equivalent to yours) would be:
##C=\frac{\epsilon_0(l-x)w}{d}+\frac{\epsilon xw}{d}##
 
So then ##Q## remains constant. I need to use equation ##U=\frac{Q^2}{2*C}##. Then I need to use ##\vec F=-\nabla U## which is ##\vec i *\frac{Q^2*d*(\epsilon-\epsilon_0)}{2*(\epsilon_0*(l-x)+\epsilon *x)^2*w}## Is this right?
 
Last edited:
Jack99123 said:
So then ##Q## remains constant. I need to use equation ##U=\frac{Q^2}{2*C}##. Then I need to use ##\vec F=-\nabla U## which is ##\vec i *\frac{Q^2*d*(\epsilon-\epsilon_0)}{2*(\epsilon_0*(l-x)+\epsilon *x)^2*w}## Is this right?
Looks probably OK - but I'm not checking the algebra for you!

Check if the question requires an answer in terms of the initial voltage (V). If so, you will need replace Q with a suitable expression.
 
Last edited:

Similar threads

Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
786
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
2K