Capacitor exercise -- Calculate the force needed to withdraw the dielectric

AI Thread Summary
To calculate the force needed to withdraw the dielectric, first determine the capacitance using the formula C = ε₀(lw/d) - x(wε₀/d) + (εxw/d). Next, compute the potential energy with U = (1/2)CV², ensuring that voltage (V) is not included in U(x) as it should only depend on x and fixed values. The force can then be derived using the gradient of potential energy, leading to F = -∇U. It is essential to express U in terms of charge (Q), which remains constant, and to use the equation U = Q²/(2C) for accurate calculations. The overall approach appears sound, but careful attention to the algebra and the relationship between Q and V is necessary.
Jack99123
Messages
2
Reaction score
0
Homework Statement
Between two conducting plates (length ## l ##, width ## w ## and distance ## d ##) there is an insulator (permittivity \epsilon). The capacitor is charged with voltage ## V ## (charge ## Q ##). After this the voltage source is removed. The insulator is moved to the left in the direction of ## l ## a distance ## l-x ##. Calculate the force that the electric field tries to drag the insulator back
to between the conducting plates. (Hint. F=-∇U, expression for potential energy with
capacitance, the capacitor charge is constant, voltage changes)
Relevant Equations
##C_e=C_1+C_2##
##U=\frac{1}{2}*C*V^2##
##C=\epsilon \frac{A}{d} ##
##\vec F =-\nabla U##
First, I think that I need to calculate the capacitance. It is ## C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d} ##. After that I should calculate the potential energy. It is ##U=\frac{1}{2}*C*V^2 ##. After that I should take its gradient to get the force. So ##\vec F =-\nabla U=-\frac{d}{dx}U*\vec i=-\frac{(\frac{-w*\epsilon_0}{d}+\frac{\epsilon*w}{d})*v^2}{2}*\vec i ##
. Is this correct and if it's not, could you please help me?
fysiikkakuva1.png
 
Last edited:
Physics news on Phys.org
Jack99123 said:
First, I think that I need to calculate the capacitance. It is ## C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d} ##. After that I should calculate the potential energy. It is ##U=\frac{1}{2}*C*V^2 ##. After that I should take its gradient to get the force. So ##\vec F =-\nabla U=-\frac{d}{dx}U*\vec i=-\frac{(\frac{-w*\epsilon_0}{d}+\frac{\epsilon*w}{d})*v^2}{2}*\vec i ##
. Is this correct and if it's not, could you please help me?View attachment 280047
Your overall strategy looks OK but note:

1) You can’t have voltage (V) in your function for U(x) . (Why not?) You need to express U(x) using only x and fixed values. What quantity remains fixed when the insulator (dielectric) is moved?

2) Your equation:
##C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d}##
looks correct, but for clarity, note that you have two parallel capacitors, one with area ##xw## and the other with area ##(l-x)w##. A clearer expression for C (equivalent to yours) would be:
##C=\frac{\epsilon_0(l-x)w}{d}+\frac{\epsilon xw}{d}##
 
So then ##Q## remains constant. I need to use equation ##U=\frac{Q^2}{2*C}##. Then I need to use ##\vec F=-\nabla U## which is ##\vec i *\frac{Q^2*d*(\epsilon-\epsilon_0)}{2*(\epsilon_0*(l-x)+\epsilon *x)^2*w}## Is this right?
 
Last edited:
Jack99123 said:
So then ##Q## remains constant. I need to use equation ##U=\frac{Q^2}{2*C}##. Then I need to use ##\vec F=-\nabla U## which is ##\vec i *\frac{Q^2*d*(\epsilon-\epsilon_0)}{2*(\epsilon_0*(l-x)+\epsilon *x)^2*w}## Is this right?
Looks probably OK - but I'm not checking the algebra for you!

Check if the question requires an answer in terms of the initial voltage (V). If so, you will need replace Q with a suitable expression.
 
Last edited:
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top