Capacitor exercise -- Calculate the force needed to withdraw the dielectric

Click For Summary
To calculate the force needed to withdraw the dielectric, first determine the capacitance using the formula C = ε₀(lw/d) - x(wε₀/d) + (εxw/d). Next, compute the potential energy with U = (1/2)CV², ensuring that voltage (V) is not included in U(x) as it should only depend on x and fixed values. The force can then be derived using the gradient of potential energy, leading to F = -∇U. It is essential to express U in terms of charge (Q), which remains constant, and to use the equation U = Q²/(2C) for accurate calculations. The overall approach appears sound, but careful attention to the algebra and the relationship between Q and V is necessary.
Jack99123
Messages
2
Reaction score
0
Homework Statement
Between two conducting plates (length ## l ##, width ## w ## and distance ## d ##) there is an insulator (permittivity \epsilon). The capacitor is charged with voltage ## V ## (charge ## Q ##). After this the voltage source is removed. The insulator is moved to the left in the direction of ## l ## a distance ## l-x ##. Calculate the force that the electric field tries to drag the insulator back
to between the conducting plates. (Hint. F=-∇U, expression for potential energy with
capacitance, the capacitor charge is constant, voltage changes)
Relevant Equations
##C_e=C_1+C_2##
##U=\frac{1}{2}*C*V^2##
##C=\epsilon \frac{A}{d} ##
##\vec F =-\nabla U##
First, I think that I need to calculate the capacitance. It is ## C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d} ##. After that I should calculate the potential energy. It is ##U=\frac{1}{2}*C*V^2 ##. After that I should take its gradient to get the force. So ##\vec F =-\nabla U=-\frac{d}{dx}U*\vec i=-\frac{(\frac{-w*\epsilon_0}{d}+\frac{\epsilon*w}{d})*v^2}{2}*\vec i ##
. Is this correct and if it's not, could you please help me?
fysiikkakuva1.png
 
Last edited:
Physics news on Phys.org
Jack99123 said:
First, I think that I need to calculate the capacitance. It is ## C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d} ##. After that I should calculate the potential energy. It is ##U=\frac{1}{2}*C*V^2 ##. After that I should take its gradient to get the force. So ##\vec F =-\nabla U=-\frac{d}{dx}U*\vec i=-\frac{(\frac{-w*\epsilon_0}{d}+\frac{\epsilon*w}{d})*v^2}{2}*\vec i ##
. Is this correct and if it's not, could you please help me?View attachment 280047
Your overall strategy looks OK but note:

1) You can’t have voltage (V) in your function for U(x) . (Why not?) You need to express U(x) using only x and fixed values. What quantity remains fixed when the insulator (dielectric) is moved?

2) Your equation:
##C=\epsilon_0*\frac{l*w}{d}-x*\frac{w*\epsilon_0}{d}+\epsilon*\frac{x*w}{d}##
looks correct, but for clarity, note that you have two parallel capacitors, one with area ##xw## and the other with area ##(l-x)w##. A clearer expression for C (equivalent to yours) would be:
##C=\frac{\epsilon_0(l-x)w}{d}+\frac{\epsilon xw}{d}##
 
So then ##Q## remains constant. I need to use equation ##U=\frac{Q^2}{2*C}##. Then I need to use ##\vec F=-\nabla U## which is ##\vec i *\frac{Q^2*d*(\epsilon-\epsilon_0)}{2*(\epsilon_0*(l-x)+\epsilon *x)^2*w}## Is this right?
 
Last edited:
Jack99123 said:
So then ##Q## remains constant. I need to use equation ##U=\frac{Q^2}{2*C}##. Then I need to use ##\vec F=-\nabla U## which is ##\vec i *\frac{Q^2*d*(\epsilon-\epsilon_0)}{2*(\epsilon_0*(l-x)+\epsilon *x)^2*w}## Is this right?
Looks probably OK - but I'm not checking the algebra for you!

Check if the question requires an answer in terms of the initial voltage (V). If so, you will need replace Q with a suitable expression.
 
Last edited:
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
572
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
12
Views
2K