MHB Cartesian product and symmetric difference

fatineouahbi
Messages
10
Reaction score
0
Let A,B,C be three sets . Prove Ax(BΔC)= (AxB) Δ (AxC)

I tried to start with this :

Let p be an arbitrary element of Ax(BΔC)
then p=(x,y) such that x ∈ A and y ∈ (BΔC)
x ∈ A and (y∈ B\C or y∈ C\B)
(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)

But I don't know how to continue or if I should even start with this .
 
Mathematics news on Phys.org
fatineouahbi said:
Let A,B,C be three sets . Prove Ax(BΔC)= (AxB) Δ (AxC)

I tried to start with this :

Let p be an arbitrary element of Ax(BΔC)
then p=(x,y) such that x ∈ A and y ∈ (BΔC)
x ∈ A and (y∈ B\C or y∈ C\B)
(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)

But I don't know how to continue or if I should even start with this .

It is right so far.When does it hold that $p \in (A \times B) \triangle (A \times C)$ ?
 
evinda said:
It is right so far.When does it hold that $p \in (A \times B) \triangle (A \times C)$ ?

Hello :) Thank you , I think I may get it now ?

(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)
then p ∈ Ax(B\C) or p ∈ Ax(C\B)
then p ∈ (AxB) \ (AxC) or p ∈ (AxC) \ (AxB)
thus p ∈ (AxB) △ (AxC)
then Ax(BΔC) ‎⊂ (AxB) Δ (AxC)

Then I'll just try to go backwards maybe ?
 
fatineouahbi said:
Hello :) Thank you , I think I may get it now ?

(x ∈ A and y ∈ B\C) or (x ∈ A and y ∈ C\B)
then p ∈ Ax(B\C) or p ∈ Ax(C\B)
then p ∈ (AxB) \ (AxC) or p ∈ (AxC) \ (AxB)
thus p ∈ (AxB) △ (AxC)
then Ax(BΔC) ‎⊂ (AxB) Δ (AxC)
Well done, you are right :)

fatineouahbi said:
Then I'll just try to go backwards maybe ?
Yes, you pick an element in $(A \times B)\triangle (A \times C)$ and you need to show that it is also in $A \times (B \triangle C)$.
 
evinda said:
Well done, you are right :)

Yes, you pick an element in $(A \times B)\triangle (A \times C)$ and you need to show that it is also in $A \times (B \triangle C)$.

Thank you so much !
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top