Center of gravity of this body: y = (x^2)/a (rotated about the x-axis)

  • Thread starter Thread starter Heexit
  • Start date Start date
Click For Summary
The discussion revolves around calculating the center of gravity for a body defined by the equation y = (x^2)/a when rotated about the x-axis. The proposed solution suggests that the center of gravity is (5/6)*a, although the original poster expresses uncertainty about their approach. Suggestions for improvement include using the formula for the center of mass of a solid of revolution, specifically integrating the volume of disks. There is also a note regarding potential confusion in notation, particularly with the letter 'x' resembling the Greek letter alpha. The conversation emphasizes the importance of clarity in mathematical expressions and proper integration techniques.
Heexit
Messages
10
Reaction score
3
Homework Statement
A homogeneous body is formed by rotating the surfaces in the image around the x-axis (see picture). Determine the location of the center of gravity.
Relevant Equations
N/A
Hello Physicsforum!

1684871079539.png


My solution (sorry for not writing it in LaTeX, I don't feel it's necessary since this try was more of a shot in the dark):
1684870996184.png


The answear should be (5/6)*a

Had no idea of how to go about solving this, so tried using the followin equaiton (I have no idea what W stands for in this case, but it can be switched out for mass/volume/area):
1684871334533.png


Any suggestions about what could have gone wrong alternatively what I should do instead would be appreciated!

Thanks on beforehand:smile:
 
Physics news on Phys.org
W could means weight.
 
This is a solid of revolution. It looks like you need to use $$\bar X=\frac{\int x~ dV}{\int dV}$$where ##dV## is the volume of a disk of thickness ##dx## and radius ##y##.
 
kuruman said:
This is a solid of revolution. It looks like you need to use $$\bar X=\frac{\int x~ dV}{\int dV}$$where ##dV## is the volume of a disk of thickness ##dx## and radius ##y##.
Thanks a lot for your help!
Here is my solution (still not in LaTeX!):
1684875471699.png
 
Looks OK even though not in LaTeX. Your letter ex in places looks a bit like the Greek letter alpha and that could be confusing.
 
  • Like
Likes Heexit, berkeman and MatinSAR
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...