MHB Central Limit Theorem & Gamma Distribution

htdc
Messages
3
Reaction score
0
The time it takes to complete a project is a random variable Y with the exponential distribution with parameter β=2 hours.

Apply the central limit theorem to obtain an approximation for the probability that the average project completion time of a sample of n=64 projects undertaken independently over the last year will be within 15 minutes of the true mean completion time.

Any ideas on even how to start this? :\
 
Physics news on Phys.org
Hi there,

Welcome to MHB :)

The central limit theorem states that for a sufficiently large $n$ the value of [math]\frac{S_n-n \mu}{\sigma \sqrt{n}}[/math] is approximately normal. So if you plug in the given information plus make some inferences from the fact that you have an exponential distribution, you can figure this out.

Have you done anything like this already? If you haven't seen it done it's not a process that I think many would just be able to do through intuition.

Jameson
 
Last edited:
Jameson said:
Hi there,

Welcome to MHB :)

The central limit theorem states that for a sufficiently large $n$ the value of [math]\frac{S_n-n \mu}{\delta \sqrt{n}}[/math] is approximately normal. So if you plug in the given information plus make some inferences from the fact that you have an exponential distribution, you can figure this out.

Have you done anything like this already? If you haven't seen it done it's not a process that I think many would just be able to do through intuition.

Jameson

Thanks for the quick reply. We've done a few similar examples, but like most of our homework, none of the questions match the practice problems.
 
dcht said:
The time it takes to complete a project is a random variable Y with the exponential distribution with parameter β=2 hours.

Apply the central limit theorem to obtain an approximation for the probability that the average project completion time of a sample of n=64 projects undertaken independently over the last year will be within 15 minutes of the true mean completion time.

Any ideas on even how to start this? :\

A good starting point may be to read the posts...

http://www.mathhelpboards.com/f23/unsolved-statistics-questions-other-sites-932/index9.html#post7118

http://www.mathhelpboards.com/f23/unsolved-statistics-questions-other-sites-932/index9.html#post7147

... where is explained that for n 'large enough' the p.d.f. pf the mean of n r.v. each ot them with mean $\mu$ and variance $\sigma^{2}$ is a normal distribution with mean $\mu$ and variance $\displaystyle \sigma^{2}_{n}=\frac{\sigma^{2}}{n}$. In Your case is $\displaystyle \mu=\sigma=\frac{1}{2}$, so that is $\displaystyle \sigma_{n}= \frac{1}{16}$ and the requested probability is...$\displaystyle P= \text{erf} (\frac{4}{\sqrt{2}})= .99993666575...$

$\chi$ $\sigma$
 
The effective computation of erf(x) for x 'large enough' [say x>2.5...] may be a difficult task and in these cases the identity erf(x)= 1-erfc(x) may be sucessfully used. Several years ago I created the annexed table of the erfc(x) function. In this case is $\displaystyle x=\frac{4}{\sqrt{2}} \sim 2.82$ so that is $\displaystyle \text {erfc}\ (x) \sim 7.5\ 10^{-5} \implies \text{erf}\ (x) \sim .999925$...

Kind regards

$\chi$ $\sigma$ View attachment 448
 

Attachments

  • logerfcx.jpg
    logerfcx.jpg
    43.3 KB · Views: 92
  • log erfc.JPG
    log erfc.JPG
    104.2 KB · Views: 82
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top