Centripetal acceleration of Earth around Sun

AI Thread Summary
The centripetal acceleration of Earth in its circular orbit around the Sun is calculated using the formula a = (v^2) / r, where the orbital radius is approximately 1.5e11 m. The orbital period is determined to be about 3.1536e7 seconds, leading to a calculated orbital velocity of 29885.8 m/s. Substituting this velocity into the centripetal acceleration formula yields an acceleration of approximately 0.005954 m/s^2. An alternative calculation using gravitational force also provides a similar result of about 0.0058987 m/s^2, confirming the initial calculation's accuracy. Both methods validate the centripetal acceleration of Earth around the Sun.
blue5t1053
Messages
23
Reaction score
1
Problem:
The Earth's orbit (assumed circular) around the sun is 1.5e11 m in radius, and it makes this orbit once a year. What is the centripetal acceleration of the earth?

Equations:
a = (v^2) / r
T = (2*pi*r) / v

My work:
T = (2*pi*r) / v;

1 year = (365 days / 1 year)*(24 hours / 1 day)*(60 mins / 1 day)*(60 secs / 1 min) = 3.1536e7 s;

3.1536e7 s = (2*pi*1.5e11 m) / v;
algebraically rearranged is: v = (2*pi*1.5e11 m) / (3.1536e7 s)
v = 29885.8 m/s

a = (v^2) / r;

a = ((29885.8 m/s)^2) / (1.5e11 m);
a = 0.005954 m/s^2 MY ANSWER

My question is if this is correct? I've been bombarded with tough questions up until this one and I am curious to know if I solved this correctly. It 'seemed' too easy. Confirmation on the answer would be appreciated since I can't find any information on presumed circular rotation around the sun. Thank you.
 
  • Like
Likes Emengi
Physics news on Phys.org
Looks OK to me.
 
I haven't plugged the numbers in but your working is correct.
 
The answer looks right. An alternative way of solving this question (to check your answer) would be to just ask what is the centripetal acceleration of Earth around the sun, given the sun's gravitation force at our distance.

acceleration=G*m1/r(2)

G=gravitational constant=6.67E-11 m(3)kg(-1)s(-2)
m1=mass of sun (1.00 E30) kg
r=distance to the sun = 1.5E11 m

Ie. acceleration = 6.67E-11 m(3)kg(-1)s(-2) * (1.00 E30) m / [ (1.5E11 m) * (1.5E11 m)]

Answer = 5.8987E-03 ms(-2)

My mass of distance were approximations, but the answer is very close indeed.
 
Last edited:
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top