Elegant solution for the second integral (at least in my opinion):
Identity: \int^b_a dx \int^t_{t_0} f(x,t) dt = \int^t_{t_0} dt \int^b_a f(x,t) dx
Consider \int^b_a dt \int^1_0 x^t dx.
Evaluating directly, we get \int^b_a \frac{1}{t+1} dt = \log_e \left( \frac{b+1}{a+1} \right).
Applying the identity, we get \int^1_0 dx \int^b_a x^t dt, and evaluating the inner integral shows that is equal to \int^1_0 \frac{x^b -x^a}{\log_e x} dx.
Hence, \int^1_0 \frac{x^b-x^a}{\log_e x} dx = \log_e \left( \frac{b+1}{a+1} \right)
--------
EDIT: Whoops I forgot to evaluate the actual integral here. Letting b=1, a=0 gives us the original integral as equal to \log_e 2.