Let
I=\int_{0}^{\pi}log(1-2\alpha cosx+\alpha^{2})dx
\frac{dI}{d\alpha}=\int_{0}^{\pi}\frac{-2cosx+2\alpha}{1-2\alpha cosx+\alpha^{2}}
=\frac{1}{\alpha}\int_{0}^{\pi}(1-\frac{1-\alpha^{2}}{1-2\alpha cosx+\alpha^{2}})
=\frac{\pi}{\alpha}-\frac{1}{\alpha}\int_{0}^{\pi}\frac{1-\alpha^{2}}{1+\alpha^{2}-2\alpha\frac{1-tan^{2}\frac{x}{2}}{1+tan^{2}\frac{x}{2}}}
=\frac{\pi}{\alpha}-\frac{2}{\alpha}\int_{0}^{\pi}\frac{1}{2}\frac{\frac{1+\alpha}{1-\alpha}sec^{2}\frac{x}{2}}{1+\frac{(1+\alpha)^{2}}{(1-\alpha)^{2}}tan^{2}\frac{x}{2}}
=\frac{\pi}{\alpha}-\frac{2}{\alpha}[tan^{-1}[(\frac{1+\alpha}{1-\alpha})tan\frac{x}{2}]]_{0}^{\pi}
=\frac{\pi}{2}when -1<\alpha<1, -\frac{\pi}{2}when \alpha<-1, \alpha>1
When -1<\alpha<1, \frac{dI}{d\alpha}=0 so I=k, where k is a constant
Letting \alpha=0, I=0, so I=0 (-1<\alpha<1)
When \alpha<-1, \alpha>1, \frac{dI}{d\alpha}=\frac{2\pi}{\alpha}, I=2\pi log(\alpha)+C where C is a constant. To determine the constant, a value greater than 1 or less than 1 must be substituted, but this is rather messy, so let \alpha=\frac{1}{\beta} where -1<\beta<1
I=\int_{0}^{\pi}log(1-\frac{2}{\beta} cosx+\frac{1}{\beta^{2}})<br />
=\int_{0}^{\pi}log(1-2\beta cosx+\beta^{2})+log(\frac{1}{\beta^{2}})dx
Since we already evaluated the integral when the parameter was between -1 and 1, and found the constant to be 0, likewise, the constant must also be 0 in the above case
When \alpha=1, I=\int_{0}^{\pi}log(2-2cosx)dx=\int_{0}^{\pi}log(4sin^{2}\frac{x}{2})dx
=\pi log4+4\int_{0}^{\frac{\pi}{2}}sinydy,wherey=\frac{x}{2}
\int_{0}^{\frac{\pi}{2}}sinydy=\int_{0}^{\frac{\pi}{2}}cosydy
2\int_{0}^{\frac{\pi}{2}}sinydy=\int_{0}^{\frac{\pi}{2}}log(\frac{sin2y}{2})=\int_{0}^{\frac{\pi}{2}}log(\frac{sin2y})-log2
Since \int_{0}^{\frac{\pi}{2}}log(sin2y)dy=\frac{1}{2}\int_{0}^{\frac{\pi}{2}}log(sinz)dz
=2\int_{0}^{\frac{\pi}{2}}log(sinz)dz, I=\pi log4-4\frac{\pi}{2}log2=0
It can be seen that the exact same working applies when \alpha=-1so finally
I=2\pi log(\alpha^{2}) when (\alpha<-1, \alpha>1) and 0 when (-1\le\alpha\le1)