Changing variable integral mmn15 1B

  • Thread starter Thread starter nhrock3
  • Start date Start date
  • Tags Tags
    Integral Variable
nhrock3
Messages
403
Reaction score
0
\int_{0}^{5}\int_{0}^{\sqrt{{25-x^{2}}}}ln(1+x^{2}+y^{2})dxdy
how to solve it?
 
Physics news on Phys.org
You might want to try converting it into polar coordinates:

x=rcosθ
y=rsinθ

For the limits you would need to see what shape they are describing.
 
what about dx dy
 
What does your textbook say about integrating in polar coordinates?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top