schrodingerscat11
- 86
- 1
Homework Statement
Hi! This is not really a problem. I'm just confused on how to express the charge distribution of a set of point charges in spherical coordinates. From our discussion,
ρ(\vec{r})=\sum\limits_{i=1}^N q_i δ(\vec{r}-\vec{r}')
where \vec{r} is the position of the point where charge density is being evaluated and \vec{r}' is the position of the point charge.
Three-dimensional Dirac delta function in general is
δ(\vec{r})= \frac{1}{h_1 h_2 h_3} δ(u_1 - u_1 ')δ(u_2 -u_2 ') δ(u_3 - u_3 ')
So in spherical coordinates, it is
δ(\vec{r})= \frac{1}{r^2 sin(θ)} δ(r - r')δ(θ -θ') δ(\phi - \phi')
The continuous charge distribution of these point charges is therefore
ρ(\vec{r})=\sum\limits_{i=1}^N \frac{1}{r^2 sin(θ)} δ(r - r'_i)δ(θ -θ'_i) δ(\phi - \phi'_i)
So here's the part where I'm confused. For the factor \frac{1}{r^2 sin(θ)}. do I retain it as is (i.e. r and θ are coordinates of position vector \vec{r} or do I subsitute the coordinates of my point charge (i.e. the coordinates of \vec{r}')? Thank you very much.
Homework Equations
See above.
The Attempt at a Solution
I've seen a problem and an online solution and it seems that he substituted the coordinates of \vec{r}' but I can't reconcile it from the definition of 3-D Dirac delta function I've read where the coordinates of \vec{r} are substituted instead. Thank you very much.