@PeterDonis I think your argument that ##\frac{d \tilde{R}}{ds} \cdot \frac{d \tilde{R}}{ds} = \pm 1## makes a lot of sense. I think that is a perfectly reasonable way to get around imposing ##U^2 = \pm c^2## from the get go. Although the two conclusions go hand in hand so one could argue that I'm starting from the conclusion. Then again we didn't use ##U^2 = \pm c^2## to come to the conclusion ##\frac{d \tilde{R}}{ds} \cdot \frac{d \tilde{R}}{ds} = \pm 1##.
I'm going to attempt to solve the problem with each signature. My only problem seems to be that when I use ##(-,+,+,+)## I get ##U^2 = c^2## (instead of ##U^2 = - c^2##). If I recall correctly this may not actually be a problem; we are considering a space-like vector with signature ##(-,+,+,+)## so it makes sense that ##U^2## should have the same signs as the space components.
Without further ado
Using signature (-,+,+,+)
##\tilde{R} = \left( ct, x, y, z \right)##
##\tilde{U} = c \frac{d \tilde{R}}{ds}##
##\frac{d \tilde{R}}{ds} = \left( \frac{dt}{ds} \right) \left( c , \dot{x} , \dot{y} , \dot{z} \right)##
So what is ##\frac{dt}{ds}## equal to?
consider
##\frac{d \tilde{R}}{ds} \cdot \frac{d \tilde{R}}{ds} = \left(\frac{dt}{ds}\right)^2 \left(u^2 - c^2\right)##
We know that ##u^2 \gt c^2## so the quantity directly above is positive. We also know that the derivative of a curve with respect to its own arc-length has to have magnitude of 1. Therefore,
##\frac{d \tilde{R}}{ds} \cdot \frac{d \tilde{R}}{ds} = \left(\frac{dt}{ds}\right)^2 \left(u^2 - c^2\right) = 1 \Rightarrow \frac{dt}{ds} = \frac{1}{\sqrt{u^2 - c^2}}##
##\tilde{U} = c \frac{d \tilde{R}}{ds} = c \left( \frac{dt}{ds} \right) \dot{\tilde{R}} = \frac{c}{\sqrt{u^2 - c^2}} \left( c , \dot{x}, \dot{y}, \dot{z} \right)##
So
##\tilde{U} = \frac{1}{\sqrt{\frac{u^2}{c^2} - 1}} \left( c , \tilde{u} \right)##
As for ##\tilde{U} \cdot \tilde{U}## we have
##\tilde{U} \cdot \tilde{U} = \frac{1}{\left(\frac{u^2}{c^2} -1\right)} \left(u^2 - c^2\right) = c^2##
##\tilde{U} \cdot \tilde{U} = c^2##
Using signature (+,-,-,-)
##\tilde{R} = \left( ct, x, y, z \right)##
##\tilde{U} = c \frac{d \tilde{R}}{ds}##
##\frac{d \tilde{R}}{ds} = \left( \frac{dt}{ds} \right) \left( c , \dot{x} , \dot{y} , \dot{z} \right)##
So what is ##\frac{dt}{ds}## equal to?
consider
##\frac{d \tilde{R}}{ds} \cdot \frac{d \tilde{R}}{ds} = \left(\frac{dt}{ds}\right)^2 \left(c^2 - u^2\right)##
We know that ##u^2 \gt c^2## so the quantity directly above is negative. We also know that the derivative of a curve with respect to its own arc-length has to have magnitude of 1. Therefore,
##\frac{d \tilde{R}}{ds} \cdot \frac{d \tilde{R}}{ds} = \left(\frac{dt}{ds}\right)^2 \left(c^2 - u^2\right) = -1##
##\left( \frac{dt}{ds} \right)^2 = \frac{(-1)}{(-1)\left(u^2 - c^2 \right)} = \frac{1}{u^2 - c^2} \Rightarrow \frac{dt}{ds} = \frac{1}{\sqrt{u^2 - c^2}}##
##\tilde{U} = c \frac{d \tilde{R}}{ds} = c \left( \frac{dt}{ds} \right) \dot{\tilde{R}} = \frac{c}{\sqrt{u^2 - c^2}} \left( c , \dot{x}, \dot{y}, \dot{z} \right)##
So
##\tilde{U} = \frac{1}{\sqrt{\frac{u^2}{c^2} - 1}} \left( c , \tilde{u} \right)##
As for ##\tilde{U} \cdot \tilde{U}## we have
##\tilde{U} \cdot \tilde{U} = \frac{1}{\left(\frac{u^2}{c^2} -1\right)} \left(c^2 - u^2\right) = -c^2##
##\tilde{U} \cdot \tilde{U} = - c^2##I think proving that ##\tilde{U}## is tangent to the worldline is as simple as noting that ##\tilde{U}## is just a scalar (function) multiple of ##\dot{\tilde{R}}##.