MHB Choosing a ball at random from a randomly selected box

  • Thread starter Thread starter Sapphireluna
  • Start date Start date
  • Tags Tags
    Ball Box Random
Click For Summary
The probability question involves selecting a ball from one of two boxes, each containing different numbers of white and black balls. The correct approach is to calculate the probability of choosing a box and then the probability of drawing a white ball from that box. The solution is found by determining the probabilities for each box separately and combining them, resulting in a probability of 7/12 for drawing a white ball. The initial confusion stemmed from treating the balls as if they were in a single box without considering the equal chance of selecting either box. Understanding the independent probabilities of each box is crucial for solving this problem accurately.
Sapphireluna
Messages
2
Reaction score
0
I got this probability question as homework, but I got very confused as I didn't know if I should calculate the balls in the 2 boxes as whole or if I should calculate the probability of the first box then add the probability of the second. Any help is appreciated.
Thanks.Here is the question:
There are 2 boxes, box A contains 20 white balls and 20 black balls, box B contains 10 white balls and 5 black balls. A box is chosen at random then a ball is taken at random from the chosen box, what is the probability that the ball is white?

First I thought, it should be the probability of box A + the probability of box B;
20/40 + 10/15 = 7/6
but then I thought it doesn't really make sense to me as this tells that I will always get a white ball?!

So I thought, I could do the probability of the whole lot;
30/55 = 6/11
this answer seems more reasonable, but then I was confused, as there are 2 boxes, so that the chances of a white ball being taken out of each ball should be different?
 
Mathematics news on Phys.org
Re: Help needed in this simple probability problem

Hello and welcome to MHB, Sapphireluna! (Wave)

I can see being tempted to approach the problem as if all the balls are in one big box:

$$P(\text{white})=\frac{30}{55}=\frac{6}{11}$$

However, we should approach it as follows:

$$P(\text{white})=P(\text{box 1 AND white})\,\text{OR}\,P(\text{box 2 AND white})=\frac{1}{2}\cdot\frac{20}{40}+\frac{1}{2}\cdot\frac{10}{15}=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}$$

You were on the right track with your first approach, however you didn't account for the fact that we have only a 50% probability of choosing either box.
 
Re: Help needed in this simple probability problem

MarkFL said:
Hello and welcome to MHB, Sapphireluna! (Wave)

I can see being tempted to approach the problem as if all the balls are in one big box:

$$P(\text{white})=\frac{30}{55}=\frac{6}{11}$$

However, we should approach it as follows:

$$P(\text{white})=P(\text{box 1 AND white})\,\text{OR}\,P(\text{box 2 AND white})=\frac{1}{2}\cdot\frac{20}{40}+\frac{1}{2}\cdot\frac{10}{15}=\frac{1}{4}+\frac{1}{3}=\frac{7}{12}$$

You were on the right track with your first approach, however you didn't account for the fact that we have only a 50% probability of choosing either box.

Thank you very much!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
10
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K