Skhaaan
- 6
- 0
Hello all,
I've been going through Bernard Schutz's A First Course In General Relativity, On Chapter 5 questions atm.
Should the Christoffel Symbols for a coordinate system (say polar) be the same for vectors and one-forms in that coordinate system?
I would have thought yes, but If you calculate the Christoffel Symbols using the Basis vectors of basis one forms then you get different Christoffel symbols?
I am asking because when you do the Covariant Derivative of a vector or a one form are the Christoffel Symbols the same of different?
For Vectors i.e.
\vec{V} = v^{\alpha}\vec{e}_{\alpha}
We can calculate the Christoffel symbols using
\frac{∂ \vec{e}_{\alpha}}{∂x^{\beta}} = \Gamma^{\mu}_{\alpha \beta} \vec{e}_{\mu}
Where the Basis vectors for polar coordinates are
\vec{e}_{r} = Cos(\theta)\vec{e}_{x} + Sin(\theta)\vec{e}_{y}
\vec{e}_{\theta} = -r Sin(\theta)\vec{e}_{x} + r Cos(\theta)\vec{e}_{y}
For One-Forms i.e.
\tilde{P} = p_{\alpha}\tilde{e}^{\alpha}
We can calculate the Christoffel symbols using
\frac{∂ \tilde{e}^{\alpha}}{∂x^{\beta}} = \Gamma^{\alpha}_{\beta \mu} \tilde{e}^{\mu}
Where the Basis vectors for polar coordinates are
\tilde{e}^{r} = Cos(\theta)\tilde{e}^{x} + Sin(\theta)\tilde{e}^{y}
\tilde{e}^{\theta} = - \frac{Sin(\theta)}{r}\tilde{e}^{x} + \frac{Cos(\theta)}{r}\tilde{e}^{y}
I've been going through Bernard Schutz's A First Course In General Relativity, On Chapter 5 questions atm.
Should the Christoffel Symbols for a coordinate system (say polar) be the same for vectors and one-forms in that coordinate system?
I would have thought yes, but If you calculate the Christoffel Symbols using the Basis vectors of basis one forms then you get different Christoffel symbols?
I am asking because when you do the Covariant Derivative of a vector or a one form are the Christoffel Symbols the same of different?
For Vectors i.e.
\vec{V} = v^{\alpha}\vec{e}_{\alpha}
We can calculate the Christoffel symbols using
\frac{∂ \vec{e}_{\alpha}}{∂x^{\beta}} = \Gamma^{\mu}_{\alpha \beta} \vec{e}_{\mu}
Where the Basis vectors for polar coordinates are
\vec{e}_{r} = Cos(\theta)\vec{e}_{x} + Sin(\theta)\vec{e}_{y}
\vec{e}_{\theta} = -r Sin(\theta)\vec{e}_{x} + r Cos(\theta)\vec{e}_{y}
For One-Forms i.e.
\tilde{P} = p_{\alpha}\tilde{e}^{\alpha}
We can calculate the Christoffel symbols using
\frac{∂ \tilde{e}^{\alpha}}{∂x^{\beta}} = \Gamma^{\alpha}_{\beta \mu} \tilde{e}^{\mu}
Where the Basis vectors for polar coordinates are
\tilde{e}^{r} = Cos(\theta)\tilde{e}^{x} + Sin(\theta)\tilde{e}^{y}
\tilde{e}^{\theta} = - \frac{Sin(\theta)}{r}\tilde{e}^{x} + \frac{Cos(\theta)}{r}\tilde{e}^{y}