Couperin
- 59
- 0
Homework Statement
O is the centre of the circle of radius 6cm, and A and B are two points on the circumference such that angle AOB = \theta radians.
Show that the length AB is equal to \sqrt {72 (1 - cos \theta)}
Homework Equations
I think the following might be relevant:
Cosine rule: \theta = cos^-1\frac{b^2 + c^2 - a^2}{2bc}
Area of sector = \frac{1}{2}r^2\theta
The Attempt at a Solution
I don't really know where to start here. I think pythagoras is involved somewhere. The radius 6 must therefore be squared, multplied by 2 = 72. But I don't want to work backwards from the given soultion.
Am I missing some theory about chords of circles?
Last edited: