Circular Motion: Ferris Wheel Dynamics

AI Thread Summary
The discussion focuses on the dynamics of a Ferris wheel, specifically calculating the difference in apparent weight of a passenger at the highest and lowest points. Participants clarify that the difference can be expressed as Fnb - Fnt = xW, where x is a computed value. For part b, it is suggested that the relationship v^2/r = g can be used to find the time for one revolution. In part c, the apparent weight at the lowest point can be determined using the equation Fnb = mv^2/r + mg, with mass canceling out in the calculations. Overall, the conversation emphasizes understanding the relationships between forces and apparent weight in circular motion.
Mehta29
Messages
16
Reaction score
0
I'm on the right track, but I'm stuck here...

The radius of a Ferris wheel is 5 m and it makes one rev in 10 sec

a Find the difference b/w the apparent weight of a passenger at the highest and lowest points, expressed as a fraction of his weight, W

b What would the time for one rev be if teh apparent weight at the top were zero?
c What would be the apparent weight at the low point??

I have at the top that

mv^2/r = mg - Fn

and at the bottom

mv^2/r = Fn -mg

I really don't undestand what a is asking...(Fnbottom - Fntop)/ W ??
 
Physics news on Phys.org
Mehta29 said:
I really don't undestand what a is asking...(Fnbottom - Fntop)/ W ??
Yes you do. It's exactly what you said. Write your answer as Fnb - Fnt = _______W
 
but I am confused as if anything else would be needed...liek that blank befor e the W...would i need to expand any further or would i just keep it
Fnbottom - Fntop = xW

b would just be v^2/r = g? and then t = 2pir/v

and c would be Fnb = mv^2/r + mg...but how would i eliminate m?
 
Last edited:
Mehta29 said:
but I am confused as if anything else would be needed...liek that blank befor e the W...would i need to expand any further or would i just keep it
Fnbottom - Fntop = xW

b would just be v^2/r = g? and then t = 2pir/v

and c would be Fnb = mv^2/r + mg...but how would i eliminate m?
Solve your earlier top and bottom equations for Fn. Take the difference between the two. Your result will be of the form
Fnb - Fnt = mA where A is a number that can be computed from the given information. You can do that. Once you have that form, multiply and divide by g
mA = mgA/g = WA/g
You can calculate A/g to express your answer as
Fnb - Fnt = (A/g)W with A/g replaced by a number.
 
i got A and B...but how would i manage part c?

im not seein anyway to cancel out the mass...
 
Mehta29 said:
i got A and B...but how would i manage part c?

im not seein anyway to cancel out the mass...
What is your understanding of "apparent weight". All the forces in the problem are proportional to mass. It will cancel out.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top