Circular waveguide wave-equation

n0_3sc
Messages
238
Reaction score
1
I am solving the wave-equation (more specifically Helmholtz Eq.) in cylindrical coordinates.
I've separated the equation into 3 ODE's.
- The radial differential equation
- The phase differential equation
- The z differential equation (direction of which the EM wave propagates)

My issue is the solution to the phase's differential equation. It has the simple solution:
Ae^{im\phi}+c.c. (easy to prove).

Why is 'm' an integer?
Are the phases 'quantised'?

I've read in many books that m must be an integer to allow continuity at 2\pi, but that's as far as they go...I'm very confused...
 
Physics news on Phys.org
Ae^{im\phi}+c.c. is just 2Acos(m*phi) (at least if A is real). As phi is an angular coordinate then the value of the solution at phi must equal to the value of the solution at phi+2pi because they represent the same point. Hence, m is an integer. The phase isn't quantized, 'm' is quantized by the requirement that solution be single valued.
 
Last edited:
Your exact explanation to 'm' is what's confusing me...
I understand that phi must equal phi+2pi, but how do you go about saying that m*phi allows the relation (or phase continuity) phi+2pi to be satisfied??
 
n0_3sc said:
Your exact explanation to 'm' is what's confusing me...
I understand that phi must equal phi+2pi, but how do you go about saying that m*phi allows the relation (or phase continuity) phi+2pi to be satisfied??

The condition

\cos[m (\phi + 2 \pi)] \equiv \cos[m \phi + 2 m \pi] = \cos[m \phi]

can be satisfied only if m is integer.

Eugene.
 
Thanks Eugene, I was thinking about the problem in too much depth.
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top